A deep understanding of deep learning (with Python intro)
Categories: AI, Data Analyst, Data Engineer, AI, Machine Learning

About Course
Nội dung bài học
- The theory and math underlying deep learning
- How to build artificial neural networks
- Architectures of feedforward and convolutional networks
- Building models in PyTorch
- The calculus and code of gradient descent
- Fine-tuning deep network models
- Learn Python from scratch (no prior coding experience necessary)
- How and why autoencoders work
- How to use transfer learning
- Improving model performance using regularization
- Optimizing weight initializations
- Understand image convolution using predefined and learned kernels
- Whether deep learning models are understandable or mysterious black-boxes!
- Using GPUs for deep learning (much faster than CPUs!)
Course Content
01 – Introduction
02 – Download all course materials
03 – Concepts in deep learning
04 – About the Python tutorial
05 – Math, numpy, PyTorch
- 02:06
- 09:16
- 07:05
- 06:33
- 06:58
- 09:45
- 15:27
- 19:26
- 08:26
- 18:18
- 12:47
- 15:34
- 11:18
- 08:37
- 13:58
- 16:39
- 08:32
- 10:00
06 – Gradient descent
- 14:15
- 11:56
- 17:11
- 11:30
- 14:48
- 05:16
- 18:56
- 15:33
- 06:04
- 01:52
07 – ANNs (Artificial Neural Networks)
- 19:50
- 13:38
- 16:22
- 10:54
- 12:10
- 24:09
- 18:58
- 22:22
- 23:46
- 19:51
- 08:14
- 06:20
- 26:59
- 11:56
- 10:00
- 17:25
- 13:17
- 20:31
- 06:37
- 08:26
08 – Overfitting and cross-validation
- 12:29
- 17:13
- 06:09
- 12:39
- 21:01
- 20:27
- 09:45
- 08:09
09 – Regularization
- 13:39
- 07:14
- 21:56
- 23:13
- 06:33
- 18:25
- 13:24
- 12:22
- 11:32
- 10:47
- 06:59
- 11:57
10 – Metaparameters (activations, optimizers)
- 05:02
- 17:29
- 15:38
- 13:12
- 09:33
- 13:16
- 07:38
- 05:07
- 17:59
- 12:12
- 09:27
- 07:49
- 17:06
- 16:47
- 18:42
- 14:05
- 18:41
- 07:46
- 15:40
- 10:17
- 06:57
- 07:42
- 12:15
- 11:47
11 – FFNs (Feed-Forward Networks)
- 04:58
- 12:33
- 22:20
- 05:24
- 16:16
- 14:48
- 12:35
- 07:06
- 08:00
- 11:25
- 10:47
- 08:31
12 – More on data
- 17:58
- 16:35
- 20:05
- 07:45
- 16:30
- 13:16
- 19:40
- 06:05
- 06:14
- 15:18
- 05:32
13 – Measuring model performance
- 07:01
- 12:40
- 06:42
- 13:34
- 12:02
- 09:14
- 09:56
- 08:35
14 – FFN milestone projects
15 – Weight inits and investigations
- 11:54
- 15:52
- 12:46
- 13:14
- 15:42
- 16:55
- 12:41
- 12:58
- 21:55
- 04:36
16 – Autoencoders
17 – Running models on a GPU
18 – Convolution and transformations
- 21:34
- 09:32
- 21:05
- 12:14
- 13:23
- 07:10
- 13:41
- 18:36
- 13:43
- 09:47
- 16:57
- 19:06
19 – Understand and design CNNs
- 10:47
- 26:06
- 08:36
- 24:10
- 27:50
- 16:48
- 11:25
- 17:10
- 09:37
- 20:15
- 16:59
- 24:59
- 10:14
- 06:45
- 13:39
- 04:42
20 – CNN milestone projects
21 – Transfer learning
- 16:53
- 10:06
- 14:25
- 06:46
- 16:44
- 03:41
- 20:01
- 18:11
22 – Style transfer
23 – Generative adversarial networks
- 17:23
- 21:55
- 09:50
- 15:06
- 06:05
- 06:24
- 07:51
24 – RNNs (Recurrent Neural Networks) (and GRULSTM)
- 12:53
- 15:14
- 17:45
- 19:30
- 24:49
- 15:52
- 23:08
- 13:26
- 25:11
25 – Ethics of deep learning
26 – Where to go from here
27 – Python intro Data types
- 03:25
- 18:14
- 18:31
- 13:31
- 09:29
- 07:40
- 18:19
- 11:51
28 – Python intro Indexing, slicing
- 12:30
- 11:45
29 – Python intro Functions
- 07:01
- 14:20
- 13:57
- 07:36
- 20:27
- 13:20
- 05:45
- 18:46
30 – Python intro Flow control
- 15:03
- 16:58
- 17:37
- 12:12
- 07:24
- 18:01
- 15:25
- 19:30
- 15:41
- 17:42