The Data Analyst Course: Complete Data Analyst Bootcamp

About Course
Nội dung bài học
- The course provides the complete preparation you need to become a data analyst
- Fill up your resume with in-demand data skills: Python programming, NumPy, pandas, data preparation – data collection, data cleaning, data preprocessing, data visualization; data analysis, data analytics
- Acquire a big picture understanding of the data analyst role
- Learn beginner and advanced Python
- Study mathematics for Python
- We will teach you NumPy and pandas, basics and advanced
- Be able to work with text files
- Understand different data types and their memory usage
- Learn how to obtain interesting, real-time information from an API with a simple script
- Clean data with pandas Series and DataFrames
- Complete a data cleaning exercise on absenteeism rate
- Expand your knowledge of NumPy – statistics and preprocessing
- Go through a complete loan data case study and apply your NumPy skills
- Master data visualization
- Learn how to create pie, bar, line, area, histogram, scatter, regression, and combo charts
- Engage with coding exercises that will prepare you for the job
- Practice with real-world data
- Solve a final capstone project
Course Content
01 – Introduction to the Course
02 – Introduction to Data Analytics
03 – Setting up the Environment
01 – Introduction to the Course
02 – Introduction to Data Analytics
03 – Setting up the Environment
- 01:24
- 05:04
- 03:29
- 04:00
- 03:11
- 06:09
- 03:07
- 05:52
- 02:18
04 – Python Basics
- 03:37
- 03:05
- 05:40
- 03:23
- 01:33
- 01:08
- 01:34
- 00:49
- 01:18
- 01:44
- 02:10
- 05:36
- 03:02
- 02:45
- 05:34
- 02:14
- 02:02
- 03:49
- 02:36
- 01:49
- 03:06
- 01:17
- 03:56
- 04:02
- 03:19
- 04:31
- 03:11
- 04:04
- 02:56
- 02:26
- 03:49
- 03:11
- 02:27
- 03:07
05 – Fundamentals for Coding in Python
- 05:00
- 04:24
- 03:25
- 09:09
- 03:58
- 06:23
06 – Mathematics for Python
- 03:37
- 03:37
- 02:58
- 03:06
- 05:09
- 03:00
- 03:36
- 02:01
- 05:13
- 03:48
- 08:23
- 10:10
07 – NumPy Basics
08 – Pandas – Basics
- 05:41
- 05:57
- 08:41
- 05:22
- 04:00
- 04:31
- 05:37
- 04:55
- 02:36
- 04:35
- 09:54
- 05:23
- 05:56
- 05:03
- 01:58
09 – Working with Text Files
- 03:46
- 02:52
- 03:10
- 03:06
- 04:50
- 04:33
- 01:26
- 03:49
- 09:00
- 04:53
- 05:35
- 02:37
- 05:57
- 02:35
- 10:44
- 07:21
- 05:15
- 03:40
- 01:55
- 05:44
- 03:23
- 03:10
- 03:11
- 05:23
- 05:12
- 03:58
- 00:42
10 – Working with Text Data
- 09:18
- 04:13
- 06:51
- 06:44
- 04:50
- 09:03
11 – Must-Know Python Tools
12 – Data GatheringData Collection
13 – APIs (POST requests are not needed for this course)
- 03:10
- 02:35
- 02:24
- 04:57
- 03:18
- 04:39
- 04:52
- 04:41
- 02:10
- 04:21
14 – Data Cleaning and Data Preprocessing
15 – pandas Series
16 – pandas DataFrames
- 05:05
- 04:15
- 06:55
- 05:56
- 04:02
- 11:40
17 – NumPy Fundamentals
- 05:52
- 04:16
- 04:29
- 05:56
- 04:43
- 03:31
18 – NumPy DataTypes
19 – Working with Arrays
20 – Generating Data with NumPy
- 05:32
- 03:13
- 05:02
- 05:21
- 03:56
- 05:19
- 04:09
21 – Statistics with NumPy
- 07:45
- 06:02
- 06:26
- 04:17
- 02:59
- 07:36
- 04:15
- 03:09
22 – NumPy – Preprocessing
- 09:23
- 08:29
- 06:31
- 04:20
- 09:45
- 05:48
- 11:13
- 06:51
- 06:14
- 04:43
- 10:31
- 06:28
- 05:04
23 – A Loan Data Example with NumPy
- 04:50
- 04:10
- 04:35
- 05:27
- 02:50
- 05:27
- 07:08
- 08:54
- 05:20
- 06:02
- 03:28
- 07:51
- 06:32
- 08:22
- 06:46
24 – The Absenteeism Exercise – Introduction
25 – Solution to the Absenteeism Exercise
- 01:57
- 05:53
- 03:28
- 02:17
- 06:27
- 05:04
- 08:37
- 01:28
- 08:35
- 04:35
- 01:43
- 07:49
- 07:00
- 03:36
- 03:17
- 04:38
- 01:41
26 – Data Visualization
- 04:31
- 06:08
- 06:58
- 08:56
- 01:30
- 11:27
- 02:50
- 04:04
- 06:39
- 01:32
- 07:32
- 03:16
- 07:48
- 02:30
- 03:53
- 02:03
- 08:05
- 03:11
- 06:30
- 04:39
- 05:43
- 02:11
- 05:28
- 04:43
- 02:29
- 08:39
- 02:42
- 02:57
- 03:03
- 07:08
- 04:36
- 03:14
- 03:10
- 07:40
- 02:36
- 04:04
