
Spring Boot Actuator

(Production-ready features)

By Ramesh Fadatare (Java Guides)

Ramesh Fadatare ( Java Guides)



Spring Boot Actuator

1. Spring Boot Actuator module provides production-
ready features such as monitoring, metrics and 
health checks.

2. The Spring Boot Actuator enables you to monitor 
the application using HTTP endpoints and JMX.

3. Spring Boot Provides a spring-boot-starter-actuator 
library to auto-configure Actuator.

Ramesh Fadatare ( Java Guides)



Commonly used Actuator endpoints
1. Actuator /info endpoint

2. Actuator /health endpoint

3. Actuator /beans endpoint

4. Actuator /conditions endpoint

5. Actuator /mappings endpoint

6. Actuator /configprops endpoint

7. Actuator /matrics endpoint

8. Actuator /env endpoint

9. Actuator /threaddump endpoint

10.Actuator /loggers endpoint

11.Actuator /shutdown endpoint
Ramesh Fadatare ( Java Guides)



The /info Endpoint

If you added any information about the application in 
application.properties then we can view it using /info 
endpoint:

http://localhost:8080/actuator/info

Ramesh Fadatare ( Java Guides)



The /health Endpoint

The /health endpoint shows the health of the 
application, including the disk space, databases and 
more.

http://localhost:8080/actuator/health

Ramesh Fadatare ( Java Guides)



The /beans Endpoint

The /beans endpoint shows all the beans registered in 
your application, including the beans you explicitly 
configured and those auto configured by Spring Boot.

http://localhost:8080/actuator/beans

Ramesh Fadatare ( Java Guides)



The /conditions Endpoint

The /conditions endpoint shows the auto 
configuration report, categorised into pasitiveMatches 
and negativeMatches

http://localhost:8080/actuator/conditions

Ramesh Fadatare ( Java Guides)

http://localhost:8080/actuator/conditions


The /mappings Endpoint

The /mappings endpoint shows all the 
@RequestMapping paths declared in the application.

 This is very helpful for checking which request path 
will be handled by which controller method.

http://localhost:8080/actuator/mappings

Ramesh Fadatare ( Java Guides)



The /configprops Endpoint

The /configprops endpoint offers all the configuration 
properties defined by @ConfigurationProperties bean, 
including your configuration properties defined in the 
application.properties or YAML files.

http://localhost:8080/actuator/configprops

Ramesh Fadatare ( Java Guides)

http://localhost:8080/actuator/configprops


The /metrics Endpoint

The /metrics endpoint shows various metrics about 
the current application such as how much memory it 
is using, how much memory is free, the size of the 
heap used, the number of threads used, and so on.

http://localhost:8080/actuator/metrics

Ramesh Fadatare ( Java Guides)



The /env Endpoint

The /env endpoint exposes all the properties from the 
Spring’s ConfigurableEnvironment interface, such as 
a list of active profiles, application properties, system 
environment variables and so on.

http://localhost:8080/actuator/env

Ramesh Fadatare ( Java Guides)

http://localhost:8080/actuator/env


The /threaddump Endpoint

Using /threaddumb endpoint, you can view your 
application’s thread dumb with running threads 
details and JVM stack trace.

http://localhost:8080/actuator/threaddump

Ramesh Fadatare ( Java Guides)



The /loggers Endpoint

The /loggers endpoint allows you to view and configure the log 
levels of your application at runtime.

http://localhost:8080/actuator/loggers

You can view the logging level of the specific logger:

http://localhost:8080/actuator/loggers/{name}

Ex: 

http://localhost:8080/actuator/loggers/net.javaguides.springboot

Ramesh Fadatare ( Java Guides)

http://localhost:8080/actuator/loggers


The /loggers Endpoint

You can update the logging level of the logger at a runtime by sending a POST request 
to URL: http://localhost:8080/actuator/loggers/{name}

Ex: http://localhost:8080/actuator/loggers/net.javaguides.springboot

Ramesh Fadatare ( Java Guides)



The /shutdown Endpoint

The /shutdown endpoint can be used to gracefully shut down the 
application.

This endpoint not enabled by default. You can enable this 
endpoint by adding this property in application.properties file:

Management.endpoint.shutdown.enabled=true

After adding this property, we need to send the HTTP POST 
request to below endpoint:

http://localhost:8080/actuator/shutdown 

Ramesh Fadatare ( Java Guides)

http://localhost:8080/actuator/shutdown


The /shutdown Endpoint

Ex:

Ramesh Fadatare ( Java Guides)



The /shutdown Endpoint

1. This endpoint not enabled by default. You can enable this 
endpoint by adding this property in application.properties file:

Management.endpoint.shutdown.enabled=true

2. After adding this property, we need to send the HTTP POST 
request to below endpoint:

http://localhost:8080/actuator/shutdown

3. Watch the console log for spring boot application shutdown 

Ramesh Fadatare ( Java Guides)

http://localhost:8080/actuator/shutdown

