Zero To Master

Spring Security along
with JWT, OAUTH?2

eaz
bytes

SECURITY

How can I implement security to my
web/mobile applications so that
there won't be any security breaches

in my application ?

PASSWORDS

How to store passwords, validate
them, encode, decode them using
industry standard encryption
algorithms ?

USERS & ROLES

MULTIPLE LOGINS

How can I implement a mechanism
where the user will login only use

and start using my application ?

SPRING SECURITY

Most Common Questions?

eaz
bytgs

FINE GRAINED SECURITY

How can I implement security at
each level of my application

using authorization rules ?

CSRF & CORS

What is CSRF attacks and
CORS restrictions. How to

overcome them?

JWT & OAUTHZ2
What is JWT and OAUTHEe.

How I can protect my web

application using them?

PREVENTING ATTACKS

How to prevent security attacks
like Brute force, stealing of

data, session fixation

COURSE AGENDA

: Configuring
Welcome to the Securing a web app Important Interfaces, Authentication &
world of Spring e S Classes, Annotations Authorization for a
Security Security of Spring Security

web app

COURSE AGENDA

Different strategies

Implementing that Spring security Meth?d lew.rel How to handle ki
role based access provides when sec?unty using common attacks.llke
using ROLES, coming to passwords Spring Security CORS, CSRF with

AUTHORITIES Spring Security

Deep dive on JWT
& it’s role in
Authentication &
Authorization

COURSE AGENDA

Deep dive on Exploring
OAUTH2Z, OpenlD & Authorization
securing a web servers available
application using the like Keycloak

same

Important topics
of Security like
Hashing, Tokens &
many more

SPRING SECURITY eazy

bytes
PROJECT ROADMAP

MILESTONE 5

Finally the application will

‘ R be enhanced with
MILESTONE 3 Method level security will OAUTH%/ O.PEHID using
be implemented along JWT which is the most
Authorization will be with custom filters in the common security approach
MILESTONE 2 implemented using authentication and in the industry
ROLES, authorization process
MILESTONE 1 AUTHORITIES

Firstly we will create a

simple spring security

project and enable basic

security in it

INTRODUCTION TO SECURITY

WHAT & WHY

24 HOUR

CCTV

IN OPERATION

SECURITY
SYSTEM

eaz
byteys

Have you ever
observed how well

Banks are protected?

Why Banks are well
secured ? Because they
hold valuable assets
inside 1t

INTRODUCTION TO SECURITY

WHAT & WHY

Similar to Banks, our a
web apps also hold Don’t you think all
valuable data. Then hackers will steal the
why not secure data if web app 1s not

them? properly secured ?

eaz
bytgs

-

-

INTRODUCTION TO SECURITY

WHAT & WHY

WHAT IS SECURITY?

Security 1s for protecting your data and business
logic inside your web applications.

SECURITY IS AN NON FUN REQ
Security 1s very important similar to scalability,

performance and availability. No client will specifically
asks that I need security.

SECURITY FROM DEV PHASE
Security should be considered right from

development phase itself along with business logic

|

|

eaz
bytgs

DIFFERENT TYPES OF SECURITY

Security for a web application will be implemented 1n

different way like using firewalls, HTTPS, SSL,

Authentication, Authorization etc.

WHY SECURITY IMPORTANT?

Security doesn’t mean only loosing data or money but

also the brand and trust from your users which you
have built over years.

AVOIDING MOST COMMON ATTACKS
Using Security we should also avoid most common

security attacks like CSRE, Broken Authentication
inside our application.

WHY SPRING SECURITY ? eazy
bytes

Application security is not fun and challenging to implement with our custom code/framework.
Spring Security built by a team at Spring who are good at security by considering all the security

scenarios. Using Spring Security, we can secure web apps with minimum configurations. So there is
no need to re-invent the wheel here.

%

Using Spring Security we can secure our pages/API paths, enforce roles, method level
security etc. with minimum configurations easily.

mj Spring Security supports various standards of security to implement authentication, like using
h L Il username/password authentication, JWT tokens, OAuth2, OpenlD etc.

Clients sending requets

SERVLETS & FILTERS byteys

‘Web/App Server

Filters

Servlets

* Typical Scenario inside a web application

In Java web apps, Servlet Container (Web Server) takes care
of translating the HI' TP messages for Java code to
understand. One of the mostly used serviet container is Apache
Tomcat. Servlet Container converts the HT TP messages into
ServletRequest and hand over to Servlet method as a parameter.
Stmilarly, ServietResponse returns as an output to Servlet
Contazner from Servlet. So everything we write inside Java
web apps are driven by Servlets

* Role of Filters

Filters inside Java web applications can be used to intercept
each request/response and do some pre work before our
business logic. So using the same filters, Spring Security
enforce security based on our configurations inside a web
application.

SPRING SECURITY INTERNAL FLOW bytes

Authentication

Y

Spring Security [~~~ "~ ~" > Authl'/llentlcatlon ————————— > Au;)heni.:tlcatlon
Filters < ————————— anager < ————————— roviders

User entered

V V
Security UserDetails Password

Context Manager/ Encoder
Service

credentials

<_________

*

* % % % % »

SPRING SECURITY INTERNAL FLOW bytes

Spring Security Filters
A series of Spring Security filters intercept each request & work together to identify if Authentication is required or not. If authentication is
required, accordingly navigate the user to login page or use the existing details stored during initial authentication.

Authentication
Filters like UsernamePasswordAuthenticationFilter will extract username/password from HT TP request & prepare Authentication type object.
Because Authentication s the core standard of storing authenticated user details insdie Spring Security framework.

AuthenticationManager
Once recetved request from filter, it delegates the validating of the user details to the authentication providers available. Since there can be
multiple providers inside an app, it is the responsibility of the AuthenticationManager to manage all the authentication providers available.

AuthenticationProvider
AuthenticationProviders has all the core logic of validating user details for authentication.

UserDetailsManager/UserDetailsService
UserDetailsManager/UserDetailsService helps in retrieving, creating, updating, deleting the User Detatils from the DB/storage systems.

PasswordEncoder
Service interface that helps in encoding & hashing passwords. Otherwise we may have to lrve with plain text passwords &

SecurityContext
Once the request has been authenticated, the Authentication will usually be stored in a thread-local SecurityContext managed by
the SecurityContextHolder. This helps during the upcoming requests from the same user.

SEQUENCE FLOW

SPRING SECURITY DEFAULT BEHAVIOUR

Spring Security Filters

o

o
() o

-«

1) User trying to access a secure page
for the first time

2) Behind the scenes few filters like
AuthorizationFilter,
DefaultLoginPageGeneratingFilter
identify that the user is not logged in &
redirect the user to login page

3) User entered his credentials and the
request is intercepted by filters

9) The Authentication object is stored in
the SecurityContext object by the filter
for future use and the response will be
returned to the end user.

AuthenticationManager
(ProviderManager)

eaz
byteys

3

AuthenticationProvider
(DaoAuthenticationProvider

UserDetailsManager/Service
(InMemoryUserDetailsManager)

PasswordEncoder

4) Filters like UsernamePassword
AuthenticationFilter, extracts the username,
password from the request and form an object
of UsernamePasswordAuthenticationToken
which is an implementation of Authentication
interface. With the object created it invokes
authenticate() method of ProviderManager

8) ProviderManager checks if authentication
is successful or not. If not, it will try with
other available AuthenticationProviders.
Otherwise, it simply returns the
authentication details to the filters

4

5) ProviderManager which is an
implementation of AuthenticationManager
identify the list of Authentication providers
available that are supporting given
authentication object style. In the default
behaviour, authenticate() method of
DaoAuthenticationProvider will be invoked
by ProviderManager

7) At last it returns the Authentication
object with the details of authentication
success or not to ProviderManager

Al et mesesas e sreessnessaeSmasEessSSasEesEeSSsssemEsSSessssEssssmssmsessess

6) DaoAuthenticationProvider invokes the
method loadUserByUsername() of
InMemoryUserDetailsManager to load the
user details from memory. Once the user
details loaded, it takes help from the default
password encoder implementation to compare
the password and validate if the user is
authentic or not.

SEQUENCE FLOW

SPRING SECURITY DEFAULT BEHAVIOUR

e Extract User credentials

<<Authentication>>

UsernamePasswordAuthenticationToken

o Authentication

Authentication Filters

AuthorizationFilter

DefaultLoginPageGeneratingFilter

UsernamePasswordAuthenticationFilter

authentlcate()e ‘ °Authentication

<<AuthenticationManager>>

ProviderManager

authenticate() o o Authentication

<<AuthenticationProvider>>

DaoAuthenticationProvider

loadUserByUsername() o e UserDetails

<< UserDetailsService>>

InMemoryUserDetailsManager

eaz
byteys

o

o

BACKEND REST SERVICES bytes

FOR EAZYBANK APPLICATION

Services with out any security

Jcontact — This service should accept the details from the Contact Us page in the UI and save to the DB.

/notices — This service should send the notice details f?'om the DB to the ‘NOTICES’ page in the UI

Services with security

/myAccount — This service should send the account details of the logged in user from the DB to the UI

/myBalance — This service should send the balance and transaction details of the logged in user from the
DB to the UI

/myLoans — This service should send the loan details of the logged in user from the DB to the UI
/myCards — This service should send the card details of the logged in user from the DB to the Ul

DEFAULT SECURITY CONFIGURATIONS eazy

INSIDE SPRING SECURITY FRAMEWORR bytes

By default, Spring Security framework protects all the paths present inside the web application. This
behaviour ts due to the code present inside the method defaultSecurityFilterChain(HitpSecurity hitp) of
class SpringBootWebSecurityConfiguration

@Bean
@Order(SecurityProperties. BASIC AUTH ORDER)
SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {
http.authorizeHttpRequests().anyRequest().authenticated();
http.formLogin();
http.httpBasic();
return http.build();

CUSTOM SECURITY CONFIGURATIONS eazy

INSIDE SPRING SECURITY FRAMEWORR bytes

We can secure the web application APIs, Paths as per our custom requirements using Spring Security

Jramework like shown below,

@Configuration
public class ProjectSecurityConfig {

@Bean
SecurityFilterChain defaultSecurityFilter Chain(HttpSecurity http) throws Exception {

http.authorizeHttpRequests()

JrequestMatchers("/myAccount","/myBalance","/myLoans"
-requestMatchers("/notices","/contact").permitAll()
.and().formLogin()

.and().httpBasic();

,""/myCards").authenticated()

return http.build();
}

We can deny all the requests coming towards our web application APIs, Paths ustng Spring Security
Sramework like shown below,

@Configuration

public class ProjectSecurityConfig {

(@Bean

SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {

http.authorizeHttpRequests()
.anyRequest().denyAll()
.and() .formLogin()
.and().httpBasic();

return http.build();
}

DENY ALL SECURITY CONFIGURATIONS eazy

INSIDE SPRING SECURITY FRAMEWORR bytes

We can permut all the requests coming towards our web application APIs, Paths using Spring Security
Sramework like shown below,

@Configuration

public class ProjectSecurityConfig {

@Bean

SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {

http.authorizeHttpRequests()
.anyRequest().permitAll()
.and().formLogin()

.and().httpBasic();

return http.build();
}

PERMIT ALL SECURITY CONFIGURATIONS eazy

INSIDE SPRING SECURITY FRAMEWORR bytes

App?‘oac.‘h 1 where we use

Instead of defining a single user inside application.properties, as a next step we can define multiple
users along with therr authorities with the help of InMemoryUserDetailsManager & UserDetails

CONFIGURE USERS

USING InMemoryUserDetailsManager

public InMemoryUserDetailsManager us: . S ce(){
UserDetails admin = User.withDefaultPasswordEncoder()
.username("admin")

.password("12345")

‘wz'ﬂqufaultP(zsswo7'dEncodeT() method -authorities("admin’)
while creatz'ng the user details

Jbuild();
UserDetails user = User.withDefaultPasswordEncoder()
.username("user")
.password("12345")
.authorities("read")
.Jbuild();
return new InMemoryUserDetailsManager(admin, user);

}

Instead of defining a single user inside application.properties, as a next step we can define multiple
users along with their authorities with the help of InMemoryUserDetailsManager & UserDetails

public InMemoryUserDetailsManager 0f
InMemoryUserDetailsManager inMemoryUserDetailsManager = new InMemoryUserDetailsManager();
UsexrDetails admin = User.withUsername("admin").password("12345").authorities("admin").build();
UsexDetails user = User.withUsername("user"). password("12345").authorities("read").build();
inMemoryUserDetailsManager.createUser(admin);

inMemoryUserDetailsManager.createU ;
Approach 2 where we create a bean of inMemorylseretailsManager createUsex(user)

return inMemoryUserDetailsManager;
PasswordEncoder separately

public PasswordEncoder 0{
return NoOpPasswordEncoder.getinstance();

}

CONFIGURE USERS eazy

USING InMemoryUserDetailsManager bytes

SPRING SECURITY INTERNAL FLOW bytes

Authentication

Y

Spring Security [~~~ "~ ~" > Authl'/llentlcatlon ————————— > Au;)heni.:tlcatlon
Filters < ————————— anager < ————————— roviders

User entered

V V
Security UserDetails Password

Context Manager/ Encoder
Service

credentials

<_________

data.

USER MANAGEMENT

IMPORTANT CLASSES & INTERFACES

eaz
bytgs

Core interface which loads user-specific UserDetailsService v loadUserByUsername(String username)
(Interface)
i
AV4 v" createUser(UserDetails user)
An extension of the UserDetailsService) v" updateUser(UserDetails user)
which provides the ability to create new UserDetailsManager v deleteUser(String username)
users and update existing ones. (Interface) v" changePassword(String oldPwd, String newPwd)
v" userExists(String username)
1 1 1
i i ;
' ' i
1 1 1
1 1 1
: : i
Sample implementation classes InMemoryUser JdbcUser LdapUser
provided by the Spring Security team DetailsManager | |DetailsManager DetailsManager
UserDetails

All the above interfaces & classes uses an interface UserDetails & its implementation which provides core user information.

AN UL UL N UR RN

getName()
getPrincipal()

getAuthorities()
getCredentials()

getDetails()
isAuthenticated()
setAuthenticated()
eraseCredentials()

USERDETAILS & AUTHENTICATION

RELATION BETWEEN THEM

Principal
(Interface)

,
S

Authentication
(Interface)

AV

UsernamePassword AuthenticationToken

(Class)

Why do we have 2 separate ways
to store login user details?

b

Authentication is the return type in all the
scenarios where we are trying to determine
if the authentication is successful or not.
Like inside the AuthenticationProvider &
AuthenticationManager

eazy

bytes

UserDetails
(Interface)

&
N

L

User
(Class)

getPassword()
getUsername()
getAuthorities()
isAccountNonExpired()
isAccountNonLocked()
isEnabled()

isCredentialsNonExpired()
eraseCredentials()

N NE NN N NN

>

UserDetails is the return type in all the
scenarios where we try to load the user info
from the storage systems. Like inside the
UserDetailsService & UserDetailsManager

AUTHENTICATION

USING JdbcUserDetailsManager

Instead of creating users inside the memory of web server, we can store them inside a DB and with
the help of JdbcUserDetailsManager, we can perform authentication.

public UserDetailsService u: ice(DataSource dataSource) {
Please note to create table as per the return new JdbcUserDetailsManager(dataSource);

JdbcUserDetailsManager class & }
nsert user records inside them.
NoOpPasswordEncoder ts not
recommended for prod apps.

public PasswordEncoder rdEn 01

return NoOpPasswordEncoder.getInstance();
}

USERDETAILSSERVICE IMPLEMENTATION

FOR CUSTOM USER FETCHING LOGIC

When we want to load the user details based on our own tables, columns, custom logic, then we need to
create a bean that implements UserDetailsService and overrides the method loadUserByUsername()

public class : implements UserDetailsService {

private CustomerRepository «

public UserDetails loadUserByUsername(String username) throws UsernameNotFoundException {
List<Customer> customer = customerRepository.findByEmail(username);
if (customer.size() == 0) {
throw new UsernameNotFoundException("User details not found for the user : " + username);
}

return new SecurityCustomer(customer.get(0));

}

eaz
bytgs

SEQUENCE FLOW

WITH OUR OWN USERDETAILSSERVICE IMPLEMENTATION

Spring Security Filters

o

O
N

e R e e P L)
1) User trying to access a secure page
for the first time

2) Behind the scenes few filters like
AuthorizationFilter,
DefaultLoginPageGeneratingFilter
identify that the user is not logged in &
redirect the user to login page

3) User entered his credentials and the
request is intercepted by filters

9) The Authentication object is stored in
the SecurityContext object by the filter
for future use and the response will be
returned to the end user.

AuthenticationManager
(ProviderManager)

3

AuthenticationProvider
(DaoAuthenticationProvider

eaz
byteys

UserDetailsManager/Service
(EazyBankUserDetails)

PasswordEncoder

4) Filters like UsernamePassword
AuthenticationFilter, extracts the username,
password from the request and form an object
of UsernamePasswordAuthenticationToken
which is an implementation of Authentication
interface. With the object created it invokes
authenticate() method of ProviderManager

8) ProviderManager checks if authentication
is successful or not. If not, it will try with
other available AuthenticationProviders.
Otherwise, it simply returns the
authentication details to the filters

4

5) ProviderManager which is an
implementation of AuthenticationManager
identify the list of Authentication providers
available that are supporting given
authentication object style. In the default
behaviour, authenticate() method of
DaoAuthenticationProvider will be invoked
by ProviderManager

7) At last it returns the Authentication
object with the details of authentication
success or not to ProviderManager

Al et mesesas e sreessnessaeSmasEessSSasEesEeSSsssemEsSSessssEssssmssmsessess

6) DaoAuthenticationProvider invokes the
method loadUserByUsername() of

EazyBankUserDetails to load the user details.

Once the user details loaded, it takes help
from the default password encoder
implementation to compare the password and
validate if the user is authentic or not.

SEQUENCE FLOW eazy

WITH OUR OWN USERDETAILSSERVICE IMPLEMENTATION bytes

e Extract User credentials ..
<<Authentication>>

UsernamePasswordAuthenticationToken

authentlcate()e ‘ °Authentication

o Authentication

r

<<AuthenticationManager>>
Authentication Filters

ProviderManager

AuthorizationFilter

DefaultLoginPageGeneratingFilter authenticate() o o Authentication

UsernamePasswordAuthenticationFilter

<<AuthenticationProvider>>

DaoAuthenticationProvider

loadUserByUsername() o e UserDetails

<< UserDetailsService>>

EazyBankUserDetails

HOW PASSWORDS VALIDATED beatzy
With default PasswordEncoder y es

Login Success

User entered credentials

Retrieve password details
from DB

Username
Admin
Password @ | —— —m = — = —_ — —
12345
LOGIN E x Database
N
Login Fails

Storing the passwords in a plain text inside a storage system like DB will have Integrity & Confidentiality issues. So this is not a
recommended approach for Production applications.

Encoding Vs Encryption Vs Hashing beyatzeys

Different ways of Pwd management

Encoding Encryption Hashing

v Encoding is defined as the process of v Encryption is defined as the process Y In hashing, data is converted to the
N , Tt he
converting data from one form to of transforming data in such a way hash value using some hashing

another and has nothing to do with
cryptography.

that guarantees confidentiality. e Sam

v" To achieve confidentiality,encryption v Data once hashed is non-reversible

v'It involves no secret and completely

Ceversible . i One cannot determine the original
cryptographic terms, we call a “key”. data from a hash value generated.

v Encoding can’t be used for securing v Encryption can be reversible by

<

data. Below th . blicl Given some arbitrary data along with
e o PR ety e v dae llp ol the output of a hashing algorithm, one
ral 1 . " ’
av allal.)le algorithms used for the “key”. As long as the “key” is can verify whether this data matches
encoding. confidential, encryption can be the original input data without

considered as secured. needing to see the original data

'
'
'
'
'
'
'
'
'
' requires the use of a secret which, in
'
'
'
'
'
'
'
Ex: ASCII, BASE64, UNICODE :

Encoding Vs Encryption Vs Hashing 'f;tzeys

Encoding & Decoding

A . A A
é Encoding > h Decoding > é

Plain Text Encoded Text Plain Text

Encryption & Decryption

Plain Text Encrypted Text Plain Text

Hashing (Only l—way)

=] > [#] > [+

Plain Text Hash function Hash text

HOW PASSWORDS VALIDATED lfatzy
With Hashing & PasswordEncoders y es

Login Success

User entered credentials

v

Username

Admin f32c........... adv

Hash Val
Password @ = = |p========) 0H# |feeece-a-- Nﬁtchzsu?e

12345 - .
Hashing algorithm

Retrieve already stored

password hash from DB

LOGIN i x Database
N
Login Fails

Storing & managing the passwords with hashing is the recommended approach for Production applications. With various
PasswordEncoders available inside Spring Security, it makes our life easy.

DETAILS OF PASSWORDENCODER

Methods 1nside PasswordEncoder Interface

public interface PasswordEncoder {

String encode(CharSequence rawPassword);

default boolean upgradeEncoding(String encodedPassword) {

return false;

/

boolean matches(CharSequence rawPassword, String encodedPassword);

Different implementations of PasswordEncoder inside Spring Security

* NoOpPasswordEncoder (Not recommended for Prod apps) * BCryptPasswordEncoder

* StandardPasswordEncoder (Not recommended for Prod apps) * SCryptPasswordEncoder

* Pbkdf2PasswordEncoder * Argon2PasswordEncoder

eaz
bytgs

AUTHENTICATION PROVIDER eazy
WHY DO WE NEE IT? bytées

Spring Security framework

ERRIISS Requirement 1 to accept username and password
. authentication
(] ‘ ;
———————
Supports Username,
------------ »| pwd authentication
. o o ..
Requirement 2 to accept OAUTH2 authentication Supports OAuthe
I ﬂ R CETTCITTTIITTT TETTITE LELTLLLEL 3 RECEELLELEELE & authentication
dh ‘ ;

Supports OTP
authentication

¥

Spring Security ProviderManager Authentication

Q
c ot i Providers
. Requirement 38 to accept OTP authentication R

v

F 3

v' The AuthenticationProvider in Spring Security takes care of the authentication logic. The default implementation of the
AuthenticationProvider is to delegate the responsibility of finding the user in the system to a UserDetailsService implementation &
PasswordEncoder for password validation. But if we have a custom authentication requirement that is not fulfilled by Spring Security
framework, then we can build our own authentication logic by implementing the AuthenticationProvider interface.

v It is the responsibility of the ProviderManager which is an implementation of AuthenticationManager, to check with all the
implementations of Authentication Providers and try to authenticate the user.

DETAILS OF AUTHENTICATION PROVIDER bytes

Methods inside AuthenticationProvider Interface

public interface AuthenticationProvider {

Authentication mrdjentfcate(Aut]Jent}'catf(m 3utbenticat1'on)
throws AuthenticationException;

boolean supports(Class<?> authentication);

* The authenticate() method receives and returns authentication object. We can implement all our custom

authentication logic inside authenticate() method.

* The second method in the AuthenticationProvider interface is supports(Class<?> authentication). You'll implement

this method to return true if the current AuthenticationProvider supports the type of the Authentication object

provided.

SEQUENCE FLOW
WITH OUR OWN AUTHENTICATIONPROVIDER IMPLEMENTATION

Spring Security Filters

o

O
N

e R e e P L)
1) User trying to access a secure page
for the first time

2) Behind the scenes few filters like
AuthorizationFilter,
DefaultLoginPageGeneratingFilter
identify that the user is not logged in &
redirect the user to login page

3) User entered his credentials and the
request is intercepted by filters

9) The Authentication object is stored in
the SecurityContext object by the filter
for future use and the response will be
returned to the end user.

AuthenticationManager

(ProviderManager)

eaz
byteys

AuthenticationProvider
(EazyBankUsernamePwdAuthenticationProvider)

PasswordEncoder
(BCryptPasswordEncoder)

4) Filters like UsernamePassword
AuthenticationFilter, extracts the username,
password from the request and form an object
of UsernamePasswordAuthenticationToken
which is an implementation of Authentication
interface. With the object created it invokes
authenticate() method of ProviderManager

8) ProviderManager checks if authentication
is successful or not. If not, it will try with
other available AuthenticationProviders.
Otherwise, it simply returns the
authentication details to the filters

4

5) ProviderManager which is an
implementation of AuthenticationManager
identify the list of Authentication providers
available that are supporting given
authentication object style. In this scenario,
the authenticate() method of our custom
AuthenticationProvider will be invoked by
ProviderManager

7) At last it returns the Authentication
object with the details of authentication
success or not to ProviderManager

o

6) EazyBankUsernamePwdAuthenticationProvider

load the user details from DB. Once the user

details loaded, it takes help from the configured
BCryptPasswordEncoder to compare the password

and validate if the user is authentic or not.

SEQUENCE FLOW eazy

WITH OUR OWN AUTHENTICATIONPROVIDER IMPLEMENTATION bytes

e Extract User credentials ..
<<Authentication>>

UsernamePasswordAuthenticationToken

o Authentication
authentlcate() e e Authentication

Authentication Filters

A e i s <<AuthenticationManager>>

ProviderManager

DefaultLoginPageGeneratingFilter

UsernamePasswordAuthenticationFilter

authenticate() o e Authentication

<<AuthenticationProvider>>

EazyBankUsernamePwd
AuthenticationProvider

CORS

CROSS-ORIGIN RESOURCE
SHARING

CORS & CSRF

SPRING SECUYRITY APPROACH

CSRF

CROSS-SITE REQUEST
FORGERY

eaz
bytgs

SPRING SECURITY

HOW TO HANDLE THEM USING
THE SPRING SECURITY
FRAMEWORR?

CROSS-ORIGIN RESOURCE SHARING (CORS)

CORS is a protocol that enables scripts running on a browser client to interact with resources from a different origin. For example, if a

UI app wishes to make an API call running on a different domain, it would be blocked from doing so by default due to CORS. It is a
specification from W3C implemented by most browsers.

So CORS is not a security issue/attack but the default protection provided by browsers to stop sharing the data/communication
between different origins.

"other origins' means the URL being accessed differs from the location that the JavaScript is running from, by having:
* a different scheme (HTTP or HTTPS)
* a different domain

* a different port

o
L

. - By default browser will block this communication due to CORS :

UI App running on https://domain1.com Backend API running on https://domain2.com

eaz
bytgs

SOLUTION TO HANDLE CORS lfyatzeys

If we have a valid scenario, where a Web APP Ul deployed on a server is trying to communicate with a REST service deployed on
another server, then these kind of communications we can allow with the help of @CrossOrigin annotation. @CrossOrigin allows
clients from any domain to consume the API.

@CrossOrigin annotation can be mentioned on top of a class or method like mentioned below,
@CrossOrigin(origins = "http://localhost:4200") // Will allow on specified domain

@CrossOrigin(origins = "*") // Will allow any domain

. m After CORS is enabled on the backend Q

»
Ll

UI App running on https://domainl.com Backend API running on https://domain2.com

3

SOLUTION TO HANDLE CORS lfyatzeys

Instead of mentioning @CrossOrigin annotation on all the controllers inside our web app, we can define CORS related configurations
globally using Spring Security like shown below,

@Bean
SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {
I \1y+.cors().configurationSource(new CorsConfigurationSource() {
@Override
public CorsConfiguration getCorsConfiguration(HttpServletRequest request) {
CorsConfiguration config = new CorsConfiguration();
config.setAllowedOrigins(Collections.singlefonList("http://localhost:4200"));
config.setAllowedMethods(Collections.singletonList("*"));

config.setAllowCredentials(true);
config.setAllowedHeaders(Collections.singlefonList("*"));
config.setMaxAge(3600L);

return config;

1)}and().authorizeHttpRequests()
.requestMatchers("/myAccount"”,"/myBalance","/myLoans","/myCards", "/user").authenticated()
-requestMatchers("/notices","/contact","/register").permitAll()
.and().formLogin()
.and().httpBasic();
return http.build();

}

CROSS-SITE REQUEST FORGERY (CSRF) bytes

* A typical Cross-Site Request Forgery (CSRF or XSRF) attack aims to perform an operation in a web application on behalf of a user without
their explicit consent. In general, it doesn't directly steal the user's identity, but it exploits the user to carry out an action without their will.

* Consider you are using a website netflix.com and the attacker’s website evil.com.

Step 1 : The Netflix user login to Netflix.com and the backend server of Netflix will provide a cookie which will store in the browser against the
domain name Netflix.com

User submit his credentials & try to login to Netflix.com m

Netflix server create a cookie & saved in user browser
against Netflix.com domain name

Step 2 : The same Netflix user opens an evil.com website in another tab of the browser:

User accessed an evil blog/site hosted on evil.com

evil.com returns an web page which has a embedded

malicious link to change email of Netflix account. But
link appears with a text like “90% OFF on IPhone”

CROSS-SITE REQUEST FORGERY (CSRF) bytes

Step 3 : User tempted and clicked on the malicious link which makes a request to Netflix.com. And since the login cookie already present in the
same browser and the request to change email is being made to the same domain Netflix.com, the backend server of Netflix.com can'’t differentiate
from where the request came. So here the evil.com forged the request as if it is coming from a Netflix.com Ul page.

User clicks on a link on evil.com which has content N

something like below m

<form action="https://netflix.com/changeEmail"
method="POST" id="form">
<input type="hidden" name="emall" value="user@evil.com">
<form>

<script>
document.getElementById('form').submit()
</script>

SOLUTION TO CSRF ATTACK beyatzeys

* To defeat a CSRF attack, applications need a way to determine if the HITP request is legitimately generated via the application’s user
interface. The best way to achieve this is through a CSRF token. A CSRF token is a secure random token that is used to prevent CSRF attacks.
The token needs to be unique per user session and should be of large random value to make it difficult to guess.

* Let’s see how this solve CSRF attack by taking the previous Netflix example again,

Step 1 : The Netflix user login to Nettlix.com and the backend server of Netflix will provide a cookie which will store in the browser against the
domain name Netflix.com along with a randomly generated unique CSRF token for this particular user session. CSRF token is inserted within
hidden parameters of HT'ML forms to avoid exposure to session cookies.

Netflix server create a cookie & randomly generated CSRF
token

Step 2 : The same Netflix user opens an evil.com website in another tab of the browser: =
x

______________________________________ . D
cdbd
ST T TTTTTTTTT T c—

evil.com returns an web page which has a embedded

malicious link to change email of Netflix account. But
link appears with a text like “90% OFF on IPhone”

SOLUTION TO CSRF ATTACK beyatzeys

Step 3 : User tempted and clicked on the malicious link which makes a request to Netflix.com. And since the login cookie already present in the
same browser and the request to change email is being made to the same domain Netflix.com. This time the Netflix.com backend server expects
CSRF token along with the cookie. The CSRF token must be same as initial value generated during login operation

User clicks on a link on evil.com which has content N
something like below

Boom !! The Netflix throwed an error 403

The CSRF token will be used by the application server to verify the legitimacy of the end-user request if it
is coming from the same App UI or not. The application server rejects the request if the CSRF token fails to
match the test.

By default Spring Security block all HTTP POST, PUT, DELETE, PATCH operations with
an error of 403, if there is no CSRF solution implemented insdie a web application. We can
change this default behaviour by disabling the CSRF protection provided by Spring Security.

@Bean

SecurityFilterChain defaultSecurityFilt

http.csrf().disable()
.authorizeHttpRequests()

‘Chain(HttpSecurity http) throws Exception {

.requestMatchers("/myAccount","/myBalance","/myLoans","/myCards", "/user").authenticated()
.requestMatchers("/notices","/contact","/register").permitAll()
.and().formLogin()

.and().httpBasic();
return http.build();
}

DISABLE CSRF PROTECTION eazy

INSIDE SPRING SECURITY byteés

CSRF ATTACK SOLUTION eazy

INSIDE SPRING SECURITY byteés

With the below configuration of Spring Security, we can let the framework to generate a random CSRF token which can be
sent to Ul after successful login. The same taken need to be sent by Ul for every subsequent requests it is making to
backend. For certain paths, we can disable CSRF with the help of ignoringRequestMatchers.

@Bean

SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {
CsrifTokenRequestAttributeHandler requestHandler = new CsrfTokenRequestAttributeHandler();
requestHandler.setCsrfRequestAttributeName("_esxf");

http.securityContext().requireExplicitSave(false)
.and().sessionManagement(session -> session.sessionCreationPolicy(SessionCreationPolicy ALWAYY))
.cors().configurationSource(new CorsConfigurationSource() {
@Override

public CorsConfiguration getCorsConfiguration(HttpServietRequest request) {...}

.authorizeHttpRequests()
requestMatchers("/myAccount"”, "/myBalance", "/myLoans", "/myCards", "/user").authenticated()
-requestMatchers("/notices", "/contact", ""/register").permitAll()
.and().formLogin()
.and().httpBasic();
return http.build();

}

he

a

o b

b

AUTHENTICATION & AUTHORIZATION eazy

DETAILS & COMPARISION

AUTHENTICATION

In authentication, the identity of users are

checked for providing the access to the system.

Authentication(AuthN) done before

authorization

It needs usually user’s login details

If authentication fails usually we will get 401

€ITOr response

For example as a Bank customer/employee in
order to perform actions in the app, we need

to prove our identity

1.

1.

1.

1.

b 3

bytes

AUTHORIZATION

In authorization, person’s or user’s authorities

are checked for accessing the resources.

Authorization(AuthZ) always happens after

authentication.
It needs user’s privilege or roles

If authorization fails usually we will get 403

€ITor response

Once logged into the application, my roles,
authorities will decide what kind of actions I
can do

HOW AUTHORITIES STORED ? eazy

INSIDE SPRING SECURITY byteés

Authorities/Roles information in Spring Security is stored inside GrantedAuthority. There is only one method
inside GrantedAuthority which return the name of the authority or role.

SimpleGrantedAuthority is the default implementation class of GrantedAuthority interface inside Spring

Security framework.
public final class SimpleCGranted Authority implements Granted Authority {

£ Usages

public interface GrantedAuthority { private final String role;

public SimpleGranted Authority(String role) {
String getAuthority(); this.role = role;

@Override

public String getAuthority() {
return this.role;

}

HOW AUTHORITIES STORED ? eazy

INSIDE SPRING SECURITY bytés

How does Authorities information stored inside the objects
of UserDetails & Authentication interfaces which plays a
vital role during authentication of the user ?

Authentication
(Interface)

UserDetails
(Interface)

(-_---_-_-

N

UsernamePassword AuthenticationToken

User
(Class) (Class)

<-------.-
<.-.-----

getAuthorities() getAuthorities()

CONFIGURING AUTHORITIES I:?;tzeys

INSIDE SPRING SECURITY

G In Spring Security the authorities requirements can be configured using the following ways,

haSAuthOI‘ity() — Accepts a single authority for which the endpoint will be configured and

user will be validated against the single authority mentioned. Only users having the same authority
configured can invoke the endpoint.

haSAnyAuthOI'ity() — Accepts multiple authorities for which the endpoint will be

configured and user will be validated against the authorities mentioned. Only users having any of the
authority configured can invoke the endpoint.

aCCGSS() — Using Spring Expression Language (SpEL) it provides you unlimited possibilities
for configuring authorities which are not possible with the above methods. We can use operators like

OR, AND inside access() method.

<2

CONFIGURING AUTHORITIES

INSIDE SPRING SECURITY

Like shown below, we can configure authority requirements for the APIs/Paths.

@Bean

SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {
CsriTokenRequestAttributeHandler requestHandler = new CsrfTokenRequestAttributeHandler();
requestHandler.setCsrfRequestAttributeName(" _csrf™);

http.securityContext(). requireExplicitSave (false)
.and().sessionManagement(session -> session.sessionCreationPolicy(SessionCreationPolicy ALWAYS))
.cors().configurationSource(new CorsConfigurationSource() {...}).and().csrf((csrf) -> csrf.csrfTokenRequestHandler(requestHandler)
.ignoringRequestMatchers("/contact", "/register")
.csrfTokenRepository(CookieCsriTokenRepository.withHttpOnlyFalse()))
.addFilterAfter(new CsrfCookieFilter(), BasicAuthenticationFilter.class)
.authorizeHttpRequests()

.requestMatchers("/user").authenticated()
.requestMatchers("/notices", "/contact", "/register").permitAll()
.and().formLogin()
.and().httpBasic();
return http.build();
}

eaz
bytgs

AUTHORITY vs ROLE eazy

INSIDE SPRING SECURITY bytes

ROLE

* ROLE is a group of

privileges/actions

AUTHORITY

Authority is like an individual

privilege or an action

* Restricting access in a fine-grained * Restricting access 1n a coarse-

manner
Ex: VIEWACCOUNT,
VIEWCARDS etc.

grained manner

* Ex: ROLE_ADMIN, ROLE USER

The names of the authorities/roles are arbitrary in nature and these names can be customized as per the business requirement

Roles are also represented using the same contract GrantedAuthority in Spring Security.

When defining a role, its name should start with the ROLE_ prefix. This prefix specifies the difference between a role and an
authority.

CONFIGURING AUTHORITIES I:?;tzeys

INSIDE SPRING SECURITY

a In Spring Security the ROLES requirements can be configured using the following ways,

hasRole() — Accepts a single role name for which the endpoint will be configured and user

will be validated against the single role mentioned. Only users having the same role configured can

invoke the endpoint.

haSAnyROle() — Accepts multiple roles for which the endpoint will be configured and user

will be validated against the roles mentioned. Only users having any of the role configured can call

the endpoint.
aCCCSS() — Using Spring Expression Language (SpEL) it provides you unlimited possibilities

for configuring roles which are not possible with the above methods. We can use operators like OR,

AND inside access() method.

Note :

* ROLE_ prefix only to be used while configuring the role in DB. But when we configure the roles, we do it only by

1ts name.
* access() method can be used not only for configuring authorization based on authority or role but also with any

speclial requirements that we have. For example we can configure access based on the country of the user or

current time/date.

CONFIGURING ROLES eazy

INSIDE SPRING SECURITY bytes

-
<) ' Like shown below, we can configure ROLES requirements for the APIs/Paths. ’ A D -

@Bean

SecurityFilterChain defaultSecurityFilterChain(HttpSecurity http) throws Exception {
CsriTokenRequestAttributeHandler requestHandler = new CsrfTokenRequestAttributeHandler();
requestHandler.setCsrfRequestAttributeName("_csxf");

http.securityContext().requireExplicitSave(false)

.and().sessionManagement(session -> session.sessionCreationPolicy(SessionCreationPolicy ALWAYY))

.cors().configurationSource(new CorsConfigurationSource() {...}).and().csrf((csrf) -> csrf.csrfTokenRequestHandler(requestHandler)
.ignoringRequestMatchers("/contact", "/register")
.csrfTokenRepository(CookieCsriTokenRepository.withHttpOnlyFalse()))
.addFilter After(new CsriCookieFilter(), BasicAuthenticationFilter.class)

.authorizeHttpRequests()
.requestMatchers("/myAccount”).hasRole("USER
.requestMatchers("/myBalance").hasAnyRole("USER","ADMIN")
.requestMatchers("/myLoans").hasRole("USER")
.requestMatchers("/myCards").hasRole("USER")
requestMatchers("/usex").authenticated()
requestMatchers("/notices", "/contact”, "/register").permitAll()

.and().formLogin()

.and().httpBasic();

return http.build();
}

eéaz
FILTERS IN SPRING SECURITY byteys

v' Lot of times we will have situations where we need to perform some house keeping activities during the authentication and
authorization flow. Few such examples are,

* Input validation

* Tracing, Auditing and reporting

* Logging of input like IP Address etc.
* Encryption and Decryption

* Multi factor authentication using OTP

v All such requirements can be handled using HTTP Filters inside Spring Security. Filters are servlet concepts which are leveraged in
Spring Security as well.

v" We already saw some in built filters of Spring security framework like UsernamePasswordAuthenticationFilter,
BasicAuthenticationFilter, DefaultLoginPageGeneratingFilter etc. in the previous sections.

v A filter is a component which receives requests, process its logic and handover to the next filter in the chain.

v Spring Security is based on a chain of servlet filters. Each filter has a specific responsibility and depending on the configuration, filters
are added or removed. We can add our custom filters as well based on the need.

FILTERS IN SPRING SECURITY If;tzeys

Security filter chain: [

DisableEncodeUrlFilter
WebAsyncManagerIntegrationFilter
v" We can always check the registered filters inside Spring Security with the below SecurityContextHolderFilter
configurations, HeaderWriterFilter
1. @EnableWebSecurity(debug = true) — We need to enable the debugging of the CorsF“ﬂter
security details CsriFilter
2. Enable logging of the details by adding the below property in LogoutFilter
application.properties UsernamePasswordAuthenticationFilter
logging.level.org.springframework.security.web.FilterChainProxy=DEBUG DefaultLoginPageGeneratingFilter
DefaultLogoutPageGeneratingFilter

BasicAuthenticationFilter

Attached are the some of the internal filters of Spring RequestCacheAwareFilter

Security that gets executed in the authentication flow, SecurityContextHolderAwareRequestFilter
AnonymousAuthenticationFilter
SessionManagementFilter
ExceptionTranslationFilter
FilterSecurityIlnterceptor

IMPLEMENTING CUSTOM FILTERS bytes

INSIDE SPRING SECURITY

v" We can create our own filters by implementing the Filter interface from the jakarta.servlet package. Post that we need to override the
doFilter() method to have our own custom logic. This method accepts 5 parameters the ServletRequest, ServletResponse and
FilterChain.

* ServletRequest—It represents the HTTP request. We use the ServletRequest object to retrieve details about the request from the
client.

* ServletResponse—It represents the HIT'TP response. We use the ServletResponse object to modify the response before sending it
back to the client or further along the filter chain.

* FilterChain—The filter chain represents a collection of filters with a defined order in which they act. We use the FilterChain object
to forward the request to the next filter in the chain.

v" You can add a new filter to the spring security chain either before, after, or at the position of a known one. Each position of the filter is
an index (a number), and you might find it also referred to as “the order.”

v Below are the methods available to configure a custom filter in the spring security flow,

* addFilterBefore(filter, class) — adds a filter before the position of the specified filter class
* addFilterAfter(filter, class) — adds a filter after the position of the specified filter class
* addFilterAt(filter, class) — adds a filter at the location of the specified filter class

ADD FILTER BEFORE

IN SPRING SECURITY

eaz
byteys

addFilterBefore(filter, class) — It will add a filter before the position of the specified filter class.

Request

Response

CorsFilter
(Order 1)

CsrfFilter
(Order 2)

RequestValidationFilter
(Order 3)

BasicAuthenticationFilter

(Order 4)

have the string ‘test” inside it.

Here we add a filter just before authentication to write our own custom validation where the input email provided should not

ADD FILTER AFTER eazy

bytes
IN SPRING SECURITY

addFilterAfter(filter, class) — It will add a filter after the position of the specified filter class

Request

Response

CorsFilter }————-——_ > CsrfFilter | ________ >|BasicAuthenticationFilter |- - - —————- > LoggingFilter
(Order 1) P (Order 2) < (Order 3) e e e (Order 4)

Here we add a filter just after authentication to write a logger about successful authentication and authorities details
of the logged in users.

ADD FILTER AT

IN SPRING SECURITY

addFilterAt(filter, class) — Adds a filter at the location of the specified filter class. But the order of the execution
can’t be guaranteed. This will not replace the filters already present at the same order.

Request

_________ > CorsFilter
m <——— - (Order 1)

Response

CsrfFilter
(Order 2)

BasicAuthenticationFilter
(Order 3)

LoggingFilter
(Order 3) ?

Since we will not have control on the order of the filters and it is random 1n nature we should avoid providing the

filters at same order.

eaz
byteys

GenericFilterBean

This 1s an abstract class filter bean
which allows you to use the
mitialization parameters and
configurations defined inside the

deployment descriptors

eéaz

OTHER IMPORTANT FILTERS byt eys

OncePerRequestFilter

Spring doesn’t guarantee that your
filter will be called only once.But if
we have a scenario where we need to
male sure to execute our filter only

once then we can use this.

ROLE OF TORKENS

IN AUTHN & AUTHZ

eaz
byteys

v A Token can be a plain string of format universally unique identifier (UUID) or it can be of type JSON Web Token (JWT) usually
that get generated when the user authenticated for the first time during login.

v" On every request to a restricted resource, the client sends the access token in the query string or Authorization header. The server
then validates the token and, if it’s valid, returns the secure resource to the client.

Client will receive the token
after successful login in a
header/query string etc.

Client system has to make sure
to send the same token value

on all the further request to
the backend server

Client

/user/login with username & password

0a099aae-273a-11eb-adc1-0242ac120002
Returns a token to the client

/user/myAccount

0a099aae-273a-11eb-adc1-0242ac120002

Token is Valid. Here are the account details

Auth Server/App

Auth Server/Application will generate
the token and send to client. At the
same time it stores the token and
client details in the memory/DB.

When Client makes a request with the
token, the server will validate the

token and return the protected
resources if it is a valid.

* % k% % % %

ADVANTAGES OF TOKENS bytes

Token helps us not to share the credentials for every request. It is a security risk to send credentials over the network frequently.

Tokens can be invalidated during any suspicious activities without invalidating the user credentials.

Tokens can be created with a short life span.

Tokens can be used to store the user related information like roles/authorities etc.

Reusability - We can have many separate servers, running on multiple platforms and domains, reusing the same token for
authenticating the user.

Stateless, easier to scale. The token contains all the information to identify the user, eliminating the need for the session state. If
we use a load balancer, we can pass the user to any server, instead of being bound to the same server we logged in on.

We already used tokens in the previous sections in the form of CSRF and JSESSIONID tokens.

* CSRF Token protected our application from CSRF attacks.
* JSESSIONID is the default token generated by the Spring Security which helped us not to share the credentials to the backend every

time.

JWT TOKENS bytes

v JWT means JSON Web Token. It is a token implementation which will be in the JSON format and designed to
use for the web requests.

v" JWT is the most common and favorite token type that many systems use these days due to its special features
and advantages.

JWT tokens can be used both in the scenarios of Authorization/Authentication along with Information
exchange which means you can share certain user related data in the token 1tself which will reduce the burden
of maintaining such details in the sessions on the server side.

A JWT token has 3 parts each separated by a period(.) Below 1s a sample JW'T token,

eyJhbGciO1JIUzI1NiIsInR5cCI61kpXVCJ9.eyJzd WL OIIxMjMONTY sODkwliwibmF tZSI61kpvaG4gRG9l1li
wiaWFOoljoxXNTE2MjMs5MDIyfO.SfIKxwRJSMeKRF2QT4fwpMeJf36POk6yJV_adQsswic

1. Header
2. Payload
3. Signature (Optional)

JWT TORENS

eaz
byteys

v Inside the JWT header, we store metadata/info related to the token. If I chose to sign the token, the header
contains the name of the algorithm that generates the signature.
¢ i . Base64 Encoded .)
"alg": "HS256% — eyJhbGciO1JIUzI1NiIsInR5cCI6IkpXVCJ9
"typ”: "JWT”
}
v

In the body, we can store details related to user, roles etc. which can be used later for AuthN and AuthZ.
Though there 1s no such limitation what we can send and how much we can send in the body, but we should
put our best efforts to keep it as light as possible.

{

Tsub™s 1254567890, Base64 Encoded | | eyJzdWIiOiIxMjMONTY 30DkwliwibmFtZSI6Ikp
"name": "John Doe", —' vaG4gRG91liwiaWF0ljoxNTE2MjM5MDIyfQ
"jat": 1516239022

}

JWT TOKENS bytes

The last part of the token is the digital signature. This part can be optional if the party that you share the JWT
token 1s internal and that someone who you can trust but not open in the web.

But if you are sharing this token to the client applications which will be used by all the users in the open web
then we need to make sure that no one changed the header and body values like Authorities, username etc.

To make sure that no one tampered the data on the network, we can send the signature of the content when
initially the token 1s generated. To create the signature part you have to take the encoded header, the encoded
payload, a secret, the algorithm specified in the header, and sign that.

For example 1f you want to use the HMAC SHA256 algorithm, the signature will be created in the following
way:

HMACSHA256(base64UrlEncode(header) + "." + base64UrlEncode(payload), secret)

The signature 1s used to verify the message wasn't changed along the way, and, in the case of tokens signed with
a private key, it can also verify that the sender of the JWT is who 1t says 1t 1s.

VALIDATION OF JWT TORKENS eazy

bytes

Header Body/Payload Signature
{ {
1 lo". "HS256¢ "sub'": "1234567890", Hash that got generated based on
"? g"' "J\\:;’? ’ A "name': "John Doe", base64 encoded values of header,
¥ ypre 2w "iat'": 1516239022 body and secret
}

\

eyJhbGeiOiJIUzI1NilsInR5¢Cl6IkpXVClo

aWFoljoxNTE2MjMsMDIyfQ

eyJzd WLOIIxMjMoNTY sODkwliwibmFtZ5I6IkpvaG4gRG 9lliwi

¥

Compute new Signarture hash using the below formulae

HMACSHA256(base64UrlEncode(header) + "." +
base64UrlEncode(payload), secret)

SfIKxwRISMeKKF2QTafwpMeJfs6POkeyJV_adQsswse

Compare the hash values
of the newly generated

-

secret
(Stored on the backend)

hash with the hash

already stored inside the
JWT token

Not Equal

JWT TOKENS bytes

v If you want to play with JWT tokens and put these concepts into practice, you can use_Jjwt.io
debugger to decode, verify, and generate JWTs.

B JSON Web Tokens - jwt.io * -+

&« C & jwtio

Craftedby gauth®

Algorithm = Hs2s6
Encoded Decoded
HEADER:
eyJhbGci0iJIUzITNiIsInR5cCIBIKpXVCJ9. ey
{11 MiMBN Dy I 6Tk
alg 525
g7] [

TVE WT

PAYLOAD:

VERIFY SIGNATURE

eaz
METHOD LEVEL SECURITY bytes

v' As of now we have applied authorization rules on the API paths/URLs using spring security but method level
security allows to apply the authorization rules at any layer of an application like in service layer or repository
layer etc. Method level security can be enabled using the annotation @EnableMethodSecurity on the
configuration class.

v’ Method level security will also helps authorization rules even in the non-web applications where we will not
have any endpoints.

v Method level security provides the below approaches to apply the authorization rules and executing your
business logic,

* Invocation authorization — Validates if someone can invoke a method or not based on their
roles/authorities.

* Filtering authorization — Validates what a method can receive through its parameters and what the invoker
can recelve back from the method post business logic execution.

METHOD LEVEL SECURITY

eaz
bytgs

v Spring security will use the aspects from the AOP module and have the interceptors in between the method
invocation to apply the authorization rules configured.

v Method level security offers below 3 different styles for configuring the authorization rules on top of the
methods,

* The prePostEnabled property enables Spring Security @PreAuthorize & @PostAuthorize annotations
* The securedEnabled property enables @Secured annotation
* The jsr2g50Enabled property enables @RoleAllowed annotation

@Configuration

@EnableMethodSecurity(prePostEnabled = true, securedEnabled = true, jsr250Enabled = true)
public class ProjectSecurityConfig {

h

v' @Secured and @RoleAllowed are less powerful compared to @PreAuthorize and @PostAuthorize

METHOD LEVEL SECURITY eazy

* Using invocation authorization we can decide if a user is authorized to invoke a method
before the method executes (preauthorization) or after the method execution is completed
(postauthorization). For filtering the parameters before calling the method we can use
Prefiltering,

(@Service
public class LoansService {

@PreAuthorize("hasAuthority(“"VIEWLOANS’)”)
@PreAuthorize('"hasRole(ADMIN’)”)
@PreAuthorize('"hasAnyRole(‘ADMIN’,’USER’)”)
@PreAuthorize("# username == authentication.principal.username'")
public Loan getLoanDetails(String username) {

return loansRepositoryloadLoanDetailsByUserName(username);

b

METHOD LEVEL SECURITY eazy

* For applying postauthorization rules below is the sample configuration,

(@Service
public class LoanService {

@PostAuthorize ("returnObject.username == authentication.principal.username”)
@PostAuthorize('"hasPermission(returnObject, ADMIN")")
public Loan getLoanDetails(String username) {
return loanRepositoryloadLoanByUserName(username);
;

b

* When implementing complex authorization logic, we can separate the logic using a
separate class that implements PermissionEvaluator and overwrite the method
hasPermission() inside it which can be leveraged inside the hasPermission configurations.

eaz
METHOD LEVEL SECURITY bytes

* If we have a scenario where we don’t want to control the invocation of the method but we
want to make sure that the parameters sent and received to/from the method need to
follow authorization rules or filtering criteria, then we can consider filtering.

* For filtering the parameters before calling the method we can use PreFilter annotation.

But please note that the filterObject should be of type Collection interface.

(@RestController
public class ContactController {

@PreFilter("filterObject.contactName != '"Test'")

public List<Contact> saveContactInquiryDetails(@RequestBody List<Contact> contacts) {
// business logic
return contacts;

eaz
METHOD LEVEL SECURITY bytes

* For filtering the parameters after executing the method we can use PostFilter annotation.
But please note that the filterObject should be of type Collection interface.

@RestController
public class ContactController {

@PostFilter("filterObject.contactName != '"Test™)

public List<Contact> saveContactInquiryDetails((@RequestBody List<Contact> contacts) {
// business logic
return contacts;

}

* We can use the @PostFilter on the Spring Data repository methods as well to filter any

unwanted data coming from the database.

OAUTHZ2

INTRO TO OAUTHZ2 eazy

bytes
PROBLEM THAT OAUTH¢2 SOLVES

N TweetAnalyzer website that analyzes
Twitter user ‘ 1H| user tweets data and generates metrics

P § from 1t

Twitter App

v' Scenario : The twitter user want to use an third party website called TweetAnalyzer, to get some insights about his tweets
data present inside Twitter App.

* With Out OAUTHZ2 : Twitter user has to share his twitter account credentials to the TweetAnalyzer website. Using
user credentials, the TweetAnalyzer website will invoke the APIs of Twitter app to fetch the tweet details and post that
generates a report for the end user.

But it has a bigger disadvantage, the TweetAnalyzer can go fraud and make another operations on your behalf like
change password, change email, make a rouge tweet etc.

* With OAUTHZ2 : Twitter user doesn’t have to share his twitter account credentials to the TweetAnalyzer website. Instead
he will let Twitter App to give a temporary access token to TweetAnalyzer with limited access like it can only read the tweets

data.

With this approach, the TweetAnalyzer can only read the tweets data and it can’t perform any other operation.

INTRO TO OAUTHZ2 eazy

bytes
PROBLEM THAT OAUTH¢2 SOLVES

TweetAnalyzer

Pinky promise not
to misuse your
Twitter

credentials

I am believing
your pinky promisé.
Here are my
credentials

INTRO TO OAUTH2 bytes

PROBLEM THAT OAUTH2 SOLVES

How come, Google let me
use the same account in

all it’s products ? Though
they are different
websites/ Apps ?

Well the answer is with

the help of OAuth2.
OAuth2 recommend to
use a separate Auth

server for Authentication
& Authorization

INTRO TO OAUTH2 bytes

PROBLEM THAT OAUTH2 SOLVES

Loans App
* [If a Bank has multiple websites

supporting accounts, loans, cards etc.
With out OAuth2, the Bank customers
has to register and maintain different

(((

username1:pwd1

user profiles all the 3 systems

Even the AuthN & AuthZ logic,
security standards will be duplicated

(((

username2:pwd2

in all the 3 websites.
Accounts App * Any future changes or enhancements
around security, authentication etc.

need to done in all the places

(((

username3:pwd3

eaz
INTRODUCTION TO OAUTHz2 bytes

v" OAuth stands for Open Authorization. It’s a free and open protocol, built on IETF standards and licenses from the
Open Web Foundation.

v OAuth 2.0 isa security standard where you give one application permission to access your data in another application.
The steps to grant permission, or consent, are often referred to as authorization or even delegated authorization.
You authorize one application to access your data, or use features in another application on your behalf, without giving
them your password.

v" In many ways, you can think of the OAuth token as a “access card” at any office/hotel. These tokens provides limited
access to someone, without handing over full control in the form of the master key.

v The OAuth framework specifies several grant types for different use cases, as well as a framework for creating new grant types.

* Authorization Code

* PRCE

* Client Credentials

* Device Code

* Refresh Token

* Implicit Flow (Legacy)

* Password Grant (Legacy)

OAUTH2 TERMINOLOGY bytes

Resource owner - It is you the end user. In the scenario of TweetAnalyzer, the end user who want to use the

TweetAnalyzer website to get insights about this tweets. In other words, the end user owns the resources (Tweets),

that why we call him as Resource owner

~| Client — The TweetAnalyzer website 1s the client here as 1t 1s the one which interacts with Twitter after taking

= 1hl _
permission from the resource owner/end user.

e

authorization logic acts as Authorization server.

Resource Server — This is the server where the APIs, services that client want to consume are hosted. In the

scenario of TweetAnalyzer, the Twitter server which has APIs like /getTweets etc. logic implemented. In smaller

Authorization Server — This is the server which knows about resource owner. In other words, resource
owner should have an account in this server. In the scenario of TweetAnalyzer, the Twitter server which has

— — organizations, a single server can acts as both resource server and auth server.

SCOPGS — These are the granular permissions the Client wants, such as access to data or to perform certain

actions. In the scenario of TweetAnalyzer, the Auth server can issue an access token to client with the scope of

only READ TWEETS.

OAUTH2 SAMPLE FLOW eazy

bytes
IN TWEETANALYZER SCENARIO

The TweetAnalyzer team will reach out to Twitter and express their interest in working with them by allowing their

e NS users to login with Twitter.
ihil| <

— >
l The Twitter team collect the details, logo etc. from TweetAnalyzer and issued a CLIENT ID & CLIENT SECRET
The Resource owner visited TweetAnalyzer website and excited about the idea and decided to use the website. But
he has a question, do I need to share my Twitter account credentials to this website ? ® ‘. /i\/l'
< » | = 1h
The TweetAnalyzer website has a button saying “Signup with Twitter”. The end user clicked on it and boom it has .
redirect the user to Twitter login page.

The resource owner entered his credentials confidently as it is the login page of the Twitter itself.

Post successful Authentication, the Twitter will display a consent page asking the user if he is fine to share his
Tweets data READ ONLY scope to the client which is TweetAnalyzer app. He said YES

OAUTH2 SAMPLE FLOW eazy

bytes
IN TWEETANALYZER SCENARIO

The Twitter Authorization server issue an access & refresh tokens to the TweetAnalyzer website “ Ifl\/l'
< > = 1
ACCESS & REFRESH tokens are random complex strings which are tough to guess. l

Client stores these tokens for future interaction with Twitter servers

The TweetAnalyzer website sends a request to the Resource server of Twitter by invoking the API of /getTweets

‘. N, Along with the access token it received from the Auth server =
® 1| < >
. The Twitter resource server validates the access token with the Auth server and if it is valid, it return the resource _!_

owner Tweets data inside the response

With the data received from the Twitter, the TweetAnalyzer website process it and display a report to it’s
end user

1L
=

<

The end user looks at the report and he is super happy that he is able to achieve this with out sharing his Twitter
credentials. THANKS TO OAUTHe ©

B

OAUTH2 FLOW

eaz
bytgs

IN THE AUTHORIZATION CODE GRANT TYPE

CLIENT

®

USER

>

o I want to access my resources

Tell the Auth Server that you are fine e

to do this action
Hello Auth Server

are my credentials

AUTH SERVER

RESOURCE SERVER

pls allow the client to access my resources. Here
to prove my identity

Hey Client, User allowed you to access his
resources. Here 1s AUTHORIZATION CODE |

+

Here are my client credentials, AUTHZ
CODE. Please provide me an access token

>

Here 1s the access token from Auth Server e

Hey Resource Server, I want to access the us
Authz server

i
il

br resources. Here 1s the access token from

Hey Client, your token is validated successfully.

Here are the resources you 1‘equested o

OAUTH2 FLOW eazy

bvtes
IN THE AUTHORIZATION CODE GRANT TYPE y

v' In the steps 2 & 3, where client is making a request to Auth Server endpoint have to send the below important details,

* client_id - the id which identifies the client application by the Auth Server. This will be granted when the client register
first time with the Auth server.

* redirect_uri — the URI value which the Auth server needs to redirect post successful authentication. If a default value is

provided during the registration then this value i1s optional
* scope — similar to authorities. Specifies level of access that client is requesting like READ
* state — CSRF token value to protect from CSRF attacks

* response_type — With the value ‘code” which indicates that we want to follow authorization code grant

v In the step 5 where client after received a authorization code from Auth server, it will again make a request to Auth server
for a token with the below values,

* code — the authorization code received from the above steps

* client_id & client_secret — the client credentials which are registered with the auth server. Please note that these are
not user credentials

* grant_type — With the value ‘authorization_code’ which identifies the kind of grant type is used
* redirect_uri

OAUTH2 FLOW eazy

bvtes
IN THE AUTHORIZATION CODE GRANT TYPE y

v We may wonder that why in the Authorization Code grant type client is making request 2 times to Auth
server for authorization code and access token.

* In the first step, authorization server will make sure that user directly interacted with 1t along with
the credentials. If the details are correct, auth server send the authorization code to client

* Once it receives the authorization code, in this step client has to prove it’s identity along with the
authorization code & client credentials to get the access token.

v" Well you may ask why can’t Auth server directly club both the steps together and provide the token in a
single step. The answer 1s that we used to have that grant type as well which is called as

‘ilnplicit grant type’. But this grant type 1s not recommended to use due to it’s less secure.

o I want to access my resources

Tell the Auth Server that you are fine
to do this action

Hello Auth Server.
are my credentials

CLIENT

OAUTH2 FLOW

IN THE IMPLICIT GRANT FLOW

AUTH SERVER

pls allow the client to access my resources. Here
to prove my identity

Hey Client, User allowed you to access his
resources. Here 1s the ACCESS TOKEN

+

Hey Resource Server, I want to access thq
Authz server

eaz
bytgs

RESOURCE SERVER

i

user resources. Here 1s the access token from

i

Hey Client, your token 1s validated successfully;

Here are the resources you reques ted o

OAUTH2 FLOW eazy

IN THE IMPLICIT GRANT FLOW byteés

v" In the step 3, where client is making a request to Auth Server endpoint, have to send the below important details,

client_id - the id which identifies the client application by the Auth Server. This will be granted when the client
register first time with the Auth server.

redirect_uri — the URI value which the Auth server needs to redirect post successful authentication. If a default
value is provided during the registration then this value is optional

scope — similar to authorities. Specifies level of access that client is requesting like READ

state — CSRF token value to protect from CSRF attacks

response_type — With the value ‘token’ which indicates that we want to follow implicit grant type

v If the user approves the request, the authorization server will redirect the browser back to the redirect_uri
specified by the application, adding a token and state to the fragment part of the URL.

v Implicit Grant flow is deprecated and is not recommended to use in production applications. Always use the Authorization code
grant flow instead of implicit grant flow.

OAUTH2 FLOW eazy

IN THE PASSWORD GRANT/RESOURCE OWNER CREDENTIALS GRANT TYPE bytes

CLIENT AUTH SERVER RESOURCE SERVER

i
il

I want to access my resources. Here are my
credentials

Hello Auth Server, User want to access

his/her resources. Here are the credentials
of the User

Hey Client, The credentials provided are
correct. Here 1s the TOREN to access the o.

USEr Iresources

Hey Resource Server, I want to access thq user resources. Here 1s the access token from
Authz server

Hey Client, your token 1s validated successfully] Here are the resources you requested o

OAUTH2 FLOW eazy

IN THE RESOURCE OWNER CREDENTIALS GRANT TYPE bytes

v In the step 2, where client 1s making a request to Auth Server endpoint have to send the below important
details,

 client_id & client secret — the credentials of the client to authenticate itself.
* scope - similar to authorities. Specifies level of access that client is requesting like READ
* username & paSSWOI‘d — Credentials provided by the user in the login flow

* grant_type — With the value ‘password’ which indicates that we want to follow password grant type

v" We use this authentication flow only if the client, authorization server and resource servers are maintained
by the same organization.

v This flow will be usually followed by the enterprise applications who want to separate the Auth flow

and business flow. Once the Auth flow 1s separated different applications in the same organization can
leverage it.

CLIENT

OAUTH2 FLOW

IN THE CLIENT CREDENTIALS GRANT

AUTH SERVER

I want to access protected resources. Here are
my client credentials. No user involved in this.

i

Hey Client, The credentials provided are
correct. Here is the ACCESS TOREN to e

access the protected resources

Hey Resource Server, I want to access ajprotected resources. Here is the access token

issued by Auth server

TYPE

RESOURCE SERVER

i

Hey Client. Your token is validated successfully. Here are the resources o

you requested

eaz
bytgs

OAUTH2 FLOW eazy

IN THE CLIENT CREDENTIALS GRANT TYPE bytes

v' In the step 1, where client 1s making a request to Auth Server endpoint, have to send the below
important details,

e client _1d & client_secret — the credentials of the client to authenticate itself.
* scope — similar to authorities. Specifies level of access that client 1s requesting like READ
* grant_type — With the value “client_credentials” which indicates that we want to

follow client credentials grant type

v' This is the most simplest grant type flow in OAUTHZ2.

v We use this authentication flow only if there 1s no user and Ul involved. Like in the scenarios
where 2 different applications want to share data between them using backend APIs.

CLIENT

OAUTH2 FLOW

IN THE REFRESH TOKEN GRANT TYPE

AUTH SERVER RESOURCE SERVER

i
i

I want to access protected resources of the user. Here is the access token received in
the initial user login

F Y

The access token is expired

h 4

I am throwing 403 forbidden error. Sorry ! e

Hey Auth Server, I need a new access
token for the user. Here is the refresh
token of the user

F Y H

Refresh token is valid. Here is a new
access token and new refresh token

Hey Resource Server, I want to access ajprotected resources. Here is the access token

issued by Auth server

Hey Client. Your token is validated successfully. Here are the resources e

you 1'equested

eaz
byteys

OAUTH2 FLOW eazy

IN THE REFRESH TOKEN GRANT TYPE bytes

v' In the step 3, where client is making a request to Auth Server endpoint have to send the below important
details,

 client_id & client_secret — the credentials of the client to authenticate itself.

* refresh _token — the value of the refresh token received initially

* Scope — similar to authorities. Specifies level of access that client is requesting like READ

* grant_type — With the value ‘refresh_token’ which indicates that we want to follow refresh token grant
type

* This flow will be used in the scenarios where the access token of the user is expired. Instead of asking the user
to login again and again, we can use the refresh token which originally provided by the Authz server to
reauthenticate the user.

* Though we can make our access tokens to never expire but it 1s not recommended considering scenarios where
the tokens can be stole if we always use the same token

* Even 1n the resource owner credentials grant types we should not store the user credentials for reauthentication
purpose instead we should reply on the refresh tokens.

RESOURCE SERVER TOREN VALIDATION eazy

IN THE OAUTH2 FLOW USING DIRECT API CALL bytes

A
oI
oI
]

AUTHORIZATION
SERVER

Resource server validates the

- [=

— ~ token every time by calling the

USER AUTH server API for token
(RESROUCE OWNER) e validation

L d

RESOURCE
SERVER

RESOURCE SERVER TOREN VALIDATION eazy

IN THE OAUTH2 FLOW USING COMMON DB bytes

.

AUTHORIZATION
SERVER

, The token will be stored inside a DB
- ‘ by the Auth server and the same DB

7 will be used by resource server to

USER CLIENT validate the token

(RESROUCE OWNER)

RESOURCE
SERVER

RESOURCE SERVER TOREN VALIDATION eazy

IN THE OAUTH2 FLOW USING CERTIFICATES bytes

A
oz
oI
]

AUTHORIZATION
SERVER

In this approach, there will be no interaction b/w the
Auth & Resource server. The token will be signed by
Auth server and signature of 1t will be verified by

Resource server similar to JWT tokens.

USER
(RESROUCE OWNER) CLIENT

RESOURCE
SERVER

OPENID CONNECT eazy

bvtes
WHAT IS OPENID CONNECT & WHY IT IS IMPORTANT ? y

What is OpenlID Connect?

* OpenlD Connect i1s a protocol that sits on top of the OAuth 2.0 framework. While OAuth 2.0 provides authorization via
an access token containing scopes, OpenID Connect provides authentication by introducing a new ID token which

contains a new set of information and claims specifically for identity.

* With the ID token, OpenID Connect brings standards around sharing identity details among the applications.

OpenID Connect > Authentication
The OpenID Connect flow looks the same as OAuth. The only

OAuth 2.0 . Authorization differences are, in the initial request, a specific scope

of openid is used, and in the final exchange the client receives
both an Access Token and an ID Token.

OPENID CONNECT eazy

bvtes
WHAT IS OPENID CONNECT & WHY IT IS IMPORTANT ? y

Why is OpenID Connect important?

Identity is the key to any application. At the core of modern authorization is OAuth 2.0, but OAuth 2.0 lacks an
authentication component. Implementing OpenID Connect on top of OAuth 2.0 completes an IAM (Identity & Access
Management) strategy.

As more and more applications need to connect with each other and more identities are being populated on the internet, the
demand to be able to share these identities 1s also increased. With OpenID connect, applications can share the identities easily
and standard way.

OpenlD Connect add below details to OAuth 2.0

1. OIDC standardizes the scopes to openid, profile, email,
Authentication

OpenlID Connect

and address.
2. ID Token using JWT standard

3. OIDC exposes the standardized “/userinfo” endpoint.

Identity Access Management

IMPLEMENT OAUTHZ2 INSIDE EAZYBANR APP lf;tzeys

USING REYCLOAR AUTH SERVER

We may have either Angular like Client
App or REST API clients to get the
resource details from resource server. In

both kinds we need to get access token
Postman o from Auth Servers like KeyCloak.
RESOURCE SERVER
o Once the access token received from
X Auth Server, client Apps will connect
CINN with Resource server along with the
Q AK — — access token to get the details around

Auth Server

Resource Server with Accounts,
Cards, Loans etc. details

"

Angular App

Accounts, Cards, Loans etc.

Resource server will connect with Auth
Server to know the validity of the
access token.

If the access token is valid, Resource
server will respond with the details to
client Apps.

OAUTH2 AUTH CODE FLOW

WITH PROOF KEY FOR CODE EXCHANGE (PKCE)

eaz
bytgs

v" When public clients (e.g., native and single-page applications) request Access Tokens, some additional security concerns are

v

posed that are not mitigated by the Authorization Code Flow alone. This is because public clients cannot securely store
a Client Secret.

Given these situations, OAuth 2.0 provides a version of the Authorization Code Flow for public client applications which
makes use of a Proof Key for Code Exchange (PKCE).

v" The PKCE-enhanced Authorization Code Flow follows below steps,

Once user clicks login, client app creates a cryptographically-random code_verifier and from this

generates a code_challenge.

code challenge 1s a Base64-URL-encoded string of the SHA256 hash of the code verifier.

Redirects the user to the Authorization Server along with the code_challenge.

Authorization Server stores the code_challenge and redirects the user back to the application with an authorization code,
which is good for one use.

Client App sends the authorization code and the code_verifier(created in step 1) to the Authorization Server.
Authorization Server verifies the code _challenge and code_verifier. If they are valid it respond with ID Token and
Access Token (and optionally, a Refresh Token).

OAUTH2 AUTH CODE FLOW

WITH PROOF KEY FOR CODE EXCHANGE (PKCE)

USER PUBLIC CLIENT

o I want to access my resources

>

Tell the Auth Server that you are fine
to do this action

AUTH SERVER

Hello Auth Server, pls allow the client to access
my resources. Here are my credentials to prove

my 1dentity and code challenge generated by
client app along with client 1d.

Hey Client, User allowed you to access his
resources. Here 1s AUTHORIZATION CODE

+

Here 1s my client id, code verifier, AUTHZ
CODE. Please provide me a token

>

Here 1s the access token from Auth Server e

-+

Hey Resource Server, I want to access the us
Authz server

eaz
bytgs

RESOURCE SERVER

i

br resources. Here 1s the access token from

i

Hey Client, your token is validated successfully.

Here are the resources you 1‘equested o

OAUTH2 AUTH CODE FLOW eazy

bvtes
WITH PROOF REY FOR CODE EXCHANGE (PKCE) y

v" In the steps 2 & 3, where client is making a request to Auth Server endpoint have to send the below important details,

* client_id - the id which identifies the client application by the Auth Server. This will be granted when the client register
first time with the Auth server.

* redirect_uri — the URI value which the Auth server needs to redirect post successful authentication. If a default value is
provided during the registration then this value is optional

* scope — similar to authorities. Specifies level of access that client is requesting like READ

* state — CSRF token value to protect from CSRF attacks

* response_type — With the value ‘code” which indicates that we want to follow authorization code grant

* code_challenge - XXXXXXXXX — The code challenge generated as previously described
* code_challenge_method - S256 (either plain or S256)

v In the step 5 where client after received a authorization code from Auth server, it will again make a request to Auth server
for a token with the below values,

* code — the authorization code received from the above steps

e client_1d & client_secret (optional) — the client credentials which are registered with the auth server. Please note
that these are not user credentials

* grant_type — With the value ‘authorization_code’ which identifies the kind of grant type is used
* redirect_uri

* code_verifier — The code verifier for the PKCE request, that the app originally generated before the authorization
request.

A

‘7
I

‘ v
< YOU

I

N

A

H

T

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Slide Number 90
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107
	Slide Number 108
	Slide Number 109
	Slide Number 110
	Slide Number 111
	Slide Number 112
	Slide Number 113
	Slide Number 114
	Slide Number 115
	Slide Number 116
	Slide Number 117
	Slide Number 118
	Slide Number 119

