
Building Microservices using Spring Boot

and Spring Cloud

Spring Boot REST API’s
1. Create Spring Boot REST API Basics (Learn

Important Annotations)

2. Learn Creating CRUD REST API’s using
Spring Boot

Microservices Architecture using Spring boot and
Spring Cloud

Department

Service

Employee

Service

API
Gateway

React

App

Organization
Service

Choose the compatible version of

Spring boot and Spring cloud

Why Spring Boot and Spring Cloud
are a good choice for Microservices?

What is Spring Cloud
1. Spring Cloud is essentially an implementation of various

design patterns to be followed while building Cloud Native
applications. Instead of reinventing the wheel, we can simply
take advantage of various Spring Cloud modules and focus
on our main business problem than worrying about
infrastructural concerns.

Create Two Microservices
Microservice 2Microservice 1

Department

Service

Employee

Service

Import and Setup Two
Microservices in IntelliJ

By Ramesh Fadatare (Java Guides)

Configure MySQL Database
in DepartmentService

By Ramesh Fadatare (Java Guides)

Create Department JPA Entity

and Spring Data JPA Repository

in DepartmentService

By Ramesh Fadatare (Java Guides)

Create Spring Data JPA
Repository In DepartmentService

By Ramesh Fadatare (Java Guides)

Build Save Department REST
API in DepartmentService

By Ramesh Fadatare (Java Guides)

Build Get Department REST
API in DepartmentService

By Ramesh Fadatare (Java Guides)

Configure MySQL Database
in EmployeeService

By Ramesh Fadatare (Java Guides)

Create Department JPA Entity

In EmployeeService

By Ramesh Fadatare (Java Guides)

Create Spring Data JPA
Repository In EmployeeService

By Ramesh Fadatare (Java Guides)

Build Save Employee REST
API in EmployeeService

By Ramesh Fadatare (Java Guides)

Development Steps
1. Create EmployeeDto

2. Create Service Layer

3. Create Controller Layer

Build Get Employee REST
API in EmployeeService

By Ramesh Fadatare (Java Guides)

Synchronous Communication
1. The client sends a request and waits for a response from the service.

2. The important point here is that the protocol (HTTP/HTTPS) is
synchronous and the client code can only continue its task when it receives
the HTTP server response.

3. RestTemplate, WebClient and Spring Cloud Open Feign library

Microservice 2
Microservice 1

Department

ServiceEmployee

Service

Http Request

Http Response

Asynchronous Communication
1. The client sends a request and does not wait for a response from the service.

2. The client will continue executing it’s task - It don’t wait for the response
from the service.

3. RabbitMQ or Apache Kafka

Microservice 2
Microservice 1

Department

Service

Employee

Service

Message

Queue

Message

Message Broker

Microservices Communication

3 Different Ways

Queue Microservice 2Microservice 1

Department

Service

Employee

Service

1. RestTemplate

2. WebClient

3. Spring Cloud OpenFeign

Microservices Communication using

RestTemplate

Microservice 2Microservice 1

Department

Service

Employee

Service

Http Request

Http Response

Make a REST API call from Employee-Service to Department-Service

Requirements
1. Consider Employee belongs to department and employee

has a unique department code.

2. Change Get Employee REST API to return Employee
along with it’s department in response.

Development Steps
1. Add departmentCode field in Employee JPA Entity

2. Create DepartmentDto class

3. Configure RestTemplate as Spring Bean

4. Inject and use RestTemplate to make REST API call in
EmployeeServiceImpl class

RestTemplate class is in maintenance mode

As of 5.0, the RestTemplate class is in maintenance mode and
soon will be deprecated. So the Spring team recommended
using org.springframework.web.reactive.client.WebClient
that has a modern API and supports sync, async, and
streaming scenarios.

Microservices Communication using

WebClient

Microservice 2Microservice 1

Department

Service

Employee

Service

Http Request

Http Response

Make a REST API call from Employee-Service to Department-Service

Development Steps
1. Add Spring WebFlux Dependency

2. Configure WebClient as Spring Bean

3. Inject and Use WebClient to Call the REST API

4. Test using Postman Client

Microservices Communication using

Spring Cloud OpenFeign

Microservice 2Microservice 1

Department

Service

Employee

Service

Http Request

Http Response

Make a REST API call from Employee-Service to Department-Service

Development Steps
1. Add Spring cloud open feign Maven dependency to

Employee-Service

2. Enable Feign Client using @EnableFeignClients

3. Create Feign API Client

4. Change the getEmployeeById method to use APIClient

5. Test using Postman Client

Service Registry and Discovery
1. In the microservices projects, Service Registry and Discovery

play an important role because we most likely run multiple
instances of services and we need a mechanism to call other
services without hardcoding their hostnames or port numbers.

2. In addition to that, in Cloud environments service instances may
come up and go down anytime. So we need some automatic
service registration and discovery mechanism.

3. Spring Cloud addresses this problem by providing Spring Cloud
Netflix Eureka project to create Service Registry and Discovery.

Spring Cloud Netflix Eureka Server

Department

Service

Employee

Service

Service

Registry

Register with

Register with

Spring Cloud Netflix
Eruka Server

Development Steps
1. Create Spring boot project as Microservice (service-registry)

2. Add @EnableEurekaServer annotation

3. Disable Eureka Server as Eureka Client

4. Launch Eureka Server (Demo)

5. Registering Department-Service Microservice as Eureka Client

6. Run department-service Eureka Client (Demo)

7. Registering Employee-Service Microservice as Eureka Client

8. Run employee-service Eureka Client (Demo)

9. Multiple Instances of Department-Service

API Gateway
1. API Gateway provides a unified interface for a set

of microservices so that clients no need to know
about all the details of microservices internals.

2. API Gateway centralize cross-cutting concerns like
security, monitoring, rate limiting etc

3. Spring Cloud provides Spring Cloud Gateway to
create API Gateway

API Gateway

Department

Service

Employee

Service

API
Gateway

Client

Spring Cloud Gateway

Development Steps
1. Create Spring boot project as Microservice (api-

gateway)

2. Register API-Gateway as Eureka Client to
Eureka Server (Service Registry)

3. Configuring API Gateway Routes and Test
using Postman Client

What we will build?
1. We can create a Spring Cloud Config Server which provides

the configuration values for all of our microservices. We use git
as a backend to store the configuration parameters.

2. Next, we configure the location of Spring Cloud Config server
in our microservice so that it will load all the properties when
we start the application.

3. In addition to that, whenever we update the properties we can
invoke /refresh REST endpoint in our microservice so that it
will reload the configuration changes without requiring to
restart the application.

Spring Cloud Config Server

Department

Service

Employee

Service

Spring Cloud

Config Server

Register as config client

Register as config client

Development Steps
1. Create Spring boot project as Microservice

(config-server)

2. Register Config-Server as Eureka Client

3. Set up Git Location for Config Server

4. Refactor Department-Service to use Config Server

5. Refactor Employee-Service to use Config Server

6. Refresh Use case

Refresh Use case
1. Whenever we change configuration file then

we don’t have to restart the microservice and
it’s instances

2. We need to call spring boot actuator /refresh
API to reload the updated values from config
server

Problem using Spring Cloud Config Server

1. In order to reload the config changes in Config Client
applications (department-service and employee-service),
we need to trigger /refresh endpoint manually. This is not
practical and viable if you have large number of
applications.

2. Spring Cloud Bus module provides a solution.

3. Spring Cloud Bus module can be used to link multiple
applications with a message broker and we can broadcast
configuration changes.

Spring Cloud Bus

Department

Service

Employee

Service

Spring Cloud

Config Server

Register as config client

Register as config client

Message

Broker

Subscribe

Subscribe

RabbitMQ

Development Steps
1. Add spring-cloud-starter-bus-amqp dependency to department-

service and employee-service

2. Install RabbitMQ using Docker

3. RabbitMQ configuration in application.properties of department-
service and employee-service

4. Create Simple REST API in employee-service

5. Change department-service and employee-service properties file and
call /busrefresh

6. Demo

Distributed Tracing

Department

ServiceEmployee

Service
API

Gateway
Client

Trace -> trace id

Span id Span id Span id

Spring Cloud Slueth Spring Cloud Slueth
Spring Cloud Slueth

Distributed Tracing with Spring Cloud

Sleuth and Zipkin

1. We use Spring Cloud Sleuth for distributed tracing

2. We use Zipkin to visualize trace information
through UI

App name Trace id Span id

Development Steps
1. Implementing Distributed Tracing using

Spring Cloud Sleuth Library

2. Using Zipkin to Visualize Trace Information
through UI

Development Steps
1. Add dependencies

2. Using @CircuitBreaker annotation to a method
(it is calling to external service)

3. Fallback method implementation

4. Add Circuit Breaker configuration in
application.properties file

5. Restart employee-service and demo

Retry Pattern Implementation with Resilience4j

Department

ServiceEmployee

Service
API

Gateway
Client

Retry Pattern

Development Steps
1. Using @Retry annotation to a method (it is

calling to external service)

2. Fallback method implementation

3. Add Retry configuration in
application.properties file

4. Restart employee-service and demo

Ports
App name: API-GATEWAY - Port: 9191

App name: DEPARTMENT-SERVICE - Ports: 8080, 8082

App name: EMPLOYEE-SERVICE - Port: 8081

App name: CONFIG-SERVER - Port: 8888

App name: SERVICE-REGISTRY - Port: 8761

Zipkin Server: 9411

Microservices
Microservice 2Microservice 1

Department

Service

Employee

Service

Microservice 3

Organization
Service

MySQL
DB

MySQL
DB

MySQL
DB

Steps to Create Organization Service
1. Create Organization-Service using Spring Boot

2. Configure MySQL Database

3. Create Organization JPA Entity and Spring Data JPA Repository

4. Create OrganizationDto and OrganizationMapper

5. Build Save Organization REST API

6. Build Get Organization By Code REST API

7. Make REST API Call from Employee-Service to Organization-Service

8. Register Organization-Service as Eureka Client

9. Refactor Organization-Service to use Config Server

10. Configure Spring Cloud Bus and Routes for Organization-Service in API-Gateway

11.Implement distributed tracing in Organization-Service

Requirements
Client want’s employee, department and organization details in a
response.

Understanding the requirement:

Consider Employee belongs to organization and employee has a unique
organization code.

Change Get Employee REST API to return Employee along with it’s
organization in response.

Frontend React App
Department

Service

Employee

ServiceAPI

Gateway
React App

Organization
Service

axios

Route

Development Steps
1. Create React App using Create React App Tool

2. Adding Bootstrap in React Using NPM

3. Connecting React App with API-Gateway
(REST API Call)

4. Develop a React Component to Display User,
Department and Organization Details

5. Run React App and Demo

Order Service
Stock Service

Spring Boot Kafka Event-Driven Microservices
Architecture with Multiple Consumers

Email Service

order_stock OrderEvent

Microservice 1

Microservice 2

Microservice 3

OrderEvent

OrderEvent Topic

Kafka Broker Consumer
Group 1

Consumer
Group 2

Order Service Stock Service
Order

Queue

Spring Boot RabbitMQ Event-Driven Microservices
Architecture with Multiple Queues

Exchange

Email

Queue

Queue

Email Service

order_stock

order_email

Order

Microservice 1

Microservice 2

Microservice 3

Order

Order

RabbitMQ

Reference/Credit : Microservices Architecture
from Spring official website

