
Docker Core Concepts

Containers

Isolated

Single-task-focused

Shareable, reproducible

Stateless (+ volumes)

Blueprints for Containers

Code + environment

Read-only / does not run

Images

Can be built + shared

Read-write layer on 
top of image

Created with 
instructions (layers)



docker build –t NAME:TAG .

Key Commands

docker run --name NAME --rm –d IMAGE

Build context
Name & versions 

of an image
Detached 

mode
Remove once 

stopped
Container 

name

Build an image based on a Dockerfile
Run a container based on a remote or 

local Image

Share (push) an Image to a Registry
(default: DockerHub)

Fetch (pull) an Image from a Registry
(default: DockerHub)

docker push REPOSITORY/NAME:TAG docker pull REPOSITORY/NAME:TAG



Docker Containers & Data

Containers are isolated and stateless

They can store data 
internally, but data will 

be lost if the container is 

removed and replaced 
by a new one

Containers have their 
own data and 

filesystem, detached 

from the host machine 
filesystem

Use Bind Mounts to 
connect host machine 

folders

Use Volumes to persist 
data

-v /local/path:/container/path -v NAME:/container/path



Docker Containers & Networks

Containers are isolated but can be connected to 
send requests to each other (e.g. Http)

Option 1

Determine container IP and 

use that

Option 2

Create a Docker network 

and add both containers

IP might change, determining 
it is unnecessary (manual) 

work

Containers can use each 
other’s names as request 

addresses



Docker vs Docker Compose

Repeating long docker build and docker run 
commands gets annoying – especially when 

working with multiple containers

Docker Compose allows you to 
pre-define build and run 

configuration in a .yaml file

docker-compose up

Build missing images and start 

all containers

docker-compose down

Stop all started containers



Local Host (Development) vs Remote Host (Production)

Local Host / Development Remote Host / Production

Isolated, encapsulated, reproducible 
development environments

No dependency or software clashes

Develop your application in the same 
environment you’ll run it in after deployment

Isolated, encapsulated, reproducible 
environments

Easy updates: Simply replace a 
running container with an updated 

one



Deployment Is Optional!

It’s perfectly fine to use Docker (and Docker 
Compose) for local development!

Encapsulated
environments for 

different projects

No global 
installation of tools

Easy to share and 
re-produce



Deployment Considerations

Replace Bind 
Mounts with 

Volumes or COPY

Multiple containers 
might need multiple 

hosts

But they can also 
run on the same 

host (depends on 

application)

Multi-stage builds 
help with apps that 

need a build step

Control vs Ease-of-use

You can launch a remote server, install 
Docker and run your containers

You can use a managed service instead

Full control but you also need to 
manage everything

Less control and extra knowledge 
required but easier to use, less 

responsibility


