Thus far, we used the Options API for building Vue apps / components.

4 )
data() {
return { name: ‘Max’ };

I
methods: { .. }

\J .

3

This approach is absolutely fine and you can stick to it!




But you might face two main limitations / issues when building bigger Vue apps.

R Tl

setup() {
. . const name = ref(‘Max’);
} return { name: ‘Max’ }; ‘ function doSmth() { .. }
b

data() {

methods: { doSmth() { .. } } : return { name, doSmth };

/U Y,







Options API

data() { .. }

methods: { doSmth() { .. } }

computed: { val() { .. } }

watch: { .. }

provide: { .. } / inject: []




Options API

beforeCreate, created

beforeMount, mounted

beforeUpdate, updated

beforeUnmount, unmounted




What & Why Data & Reactivity

It's an alternative to the Options API: Data can be managed as ref()s
It uses setup() to expose logic/ data (individual values or objects) or
to the template reactive() objects

It's a function-based solution that Reactivity is a key concept - refs and
allows you to keep logically related reactive objects are reactive, their
code together nested values are not

Methods, Computed, Watchers The setup() Function

The setup() function is called by Vue
when the component is created —
defines data + logic for the templote

Methods become regular functions
defined in setup()

Computed properties and watchers setup() receives two arguments
are defined with imported functions (automatically): reactive props and
(from vue) context (attrs, slots, emit())




