
What is the “Composition API”?

Thus far, we used the Options API for building Vue apps / components.

{
data() {

return { name: ‘Max’ };
},
methods: { … }

}

This approach is absolutely fine and you can stick to it!



What is the ”Composition API”?

But you might face two main limitations / issues when building bigger Vue apps.

Code that belongs together logically 
is split up across multiple options 

(data, methods, computed)

Re-using logic across components 
can be tricky or cumbersome

{
setup() {

const name = ref(‘Max’);
function doSmth() { … }
return { name, doSmth };

}
}

Composition API

{
data() {

return { name: ‘Max’ };
},
methods: { doSmth() { … } }

}



From Options API to Composition API

data() methods computed watch

setup()



Options API => Composition API

Options API Composition API

data() { … } ref(), reactive()

methods: { doSmth() { … } } function doSmth() { … }

computed: { val() { … } } const val = computed()

watch: { … } watch(dep, (val, oldV) => {})

provide: { … } / inject: [] provide(key, val), 
inject(key)



Options API => Composition API: Lifecycle

Options API Composition API

beforeCreate, created Not Needed
(setup() replaces these hooks)

beforeMount, mounted onBeforeMount, onMounted

beforeUpdate, updated onBeforeUpdate, onUpdated

beforeUnmount, unmounted onBeforeUnmount, onUnmounted



Composition API

What & Why Data & Reactivity

Methods, Computed, Watchers The setup() Function

It’s an alternative to the Options API: 
It uses setup() to expose logic/ data 

to the template

It’s a function-based solution that 
allows you to keep logically related 

code together

Data can be managed as ref()s 
(individual values or objects) or 

reactive() objects

Reactivity is a key concept – refs and 
reactive objects are reactive, their 

nested values are not

Methods become regular functions 
defined in setup() 

Computed properties and watchers
are defined with imported functions 

(from vue)

The setup() function is called by Vue 
when the component is created – it 
defines data + logic for the template

setup() receives two arguments 
(automatically): reactive props and 

context (attrs, slots, emit())


