
#Big O Cheat Sheet:

-Big Os-
O(1) Constant- no loops
O(log N) Logarithmic- usually searching algorithms have log n if they are sorted (Binary Search)
O(n) Linear- for loops, while loops through n items
O(n log(n)) Log Liniear- usually sorting operations
O(n^2) Quadratic- every element in a collection needs to be compared to ever other element. Two
nested loops
O(2^n) Exponential- recursive algorithms that solves a problem of size N
O(n!) Factorial- you are adding a loop for every element

Iterating through half a collection is still O(n)
Two separate collections: O(a * b)

-What can cause time in a function?-
Operations (+, -, *, /)
Comparisons (<, >, ==)
Looping (for, while)
Outside Function call (function())

-Rule Book-
Rule 1: Always worst Case
Rule 2: Remove Constants
Rule 3: Different inputs should have different variables. O(a+b). A and B arrays nested would be
O(a*b)
+ for steps in order
* for nested steps
Rule 4: Drop Non-dominant terms

-What causes Space complexity?-
Variables
Data Structures
Function Call
Allocations


