
Data?

Application
(Code + Environment)

Temporary App Data
(e.g. entered user input)

Permanent App Data
(e.g. user accounts)

Written & provided by 
you (= the developer)

Added to image and 
container in build phase

“Fixed”: Can’t be changed 
once image is built

Fetched / Produced in 
running container

Stored in memory or 
temporary files

Dynamic and changing, 
but cleared regularly

Fetched / Produced in 
running container

Stored in files or a 
database

Must not be lost if 
container stops / restarts

Read-only, hence stored 
in Images

Read + write, 
temporary, hence stored 

in Containers

Read + write, 
permanent, stored with 

Containers & Volumes



A Container Is Based On An Image

Instruction #1: Image Layer 1

Instruction #2: Image Layer 2

Instruction #3: Image Layer 3

Container Layer (read-write)

Read-only

ImageRead-write

Container



Understanding Volumes

Volumes are folders on your host machine hard drive which are 
mounted (“made available”, mapped) into containers

Volumes persist if a 
container shuts down. If a 

container (re-)starts and 

mounts a volume, any data 
inside of that volume is 

available in the container.

A container can write data 
into a volume and read data 

from it.

Host (Your Computer)

/app/user-data/some-path



Two Types of External Data Storages

Volumes
(Managed by Docker)

Bind Mounts
(Managed by you)

Anonymous Volumes

Docker sets up a folder / path on your host machine, 
exact location is unknown to you (= dev). 

Managed via docker volume commands.

You define a folder / path on 
your host machine.

A defined path in the container is mapped to the created volume / mount.
e.g. /some-path on your hosting machine is mapped to /app/data

Great for data which 
should be persistent 

but which you don’t 

need to edit directly.

Great for persistent, editable 
(by you) data

(e.g. source code).

Named Volumes



Understanding Container / Volume Interaction

Volume
/some-path

Bind Mount
/some-other-path

Container

/app/data

/app/code

some-file.txt

file2.txt

script.js

Volumes are 
mounted into 

Container

some-file.txt

file2.txt

Container 
data is 

stored in 

volume

script.js
Volume data 
is accessible 

in container



Volumes & Bind Mounts – Quick Overview

docker run –v /app/data …

docker run –v data:/app/data …

docker run –v /path/to/code:/app/code …

Anonymous Volume

Named Volume

Bind Mount



Volumes – Comparison

Anonymous Volumes Named Volumes Bind Mounts

Created specifically for a 
single container

Survives container 
shutdown / restart unless 

--rm is used

Can not be shared across 
containers

Since it’s anonymous, it 
can’t be re-used (even on 

same image)

Created in general – not 
tied to any specific 

container

Survives container 
shutdown / restart –

removal via Docker CLI

Can be shared across 
containers

Can be re-used for same 
container (across restarts)

Location on host file 
system, not tied to any 

specific container

Survives container 
shutdown / restart –

removal on host fs

Can be shared across 
containers

Can be re-used for same 
container (across restarts)



ARGuments & ENVironment Variables

Docker supports build-time ARGuments and 
runtime ENVironment variables

ARG ENV

Available inside of Dockerfile, NOT 
accessible in CMD or any application 

code

Set on image build (docker build) 
via --build-arg

Available inside of Dockerfile & in 
application code

Set via ENV in Dockerfile or via --env 
on docker run



Module Summary

Containers can read + write data. Volumes can 
help with data storage, Bind Mounts can help with 

direct container interaction.

Containers can read + write data, but 
written data is lost if the container is 

removed

Volumes are folders on the host machine, 
managed by Docker, which are mounted 

into the Container

Named Volumes survive container 
removal and can therefore be used to 

store persistent data

Anonymous Volumes are attached to a 
container – they can be used to save 

(temporary) data inside the container

Bind Mounts are folders on the host 
machine which are specified by the user 

and mounted into containers – like 

Named Volumes

Build ARGuments and Runtime 
ENVironment variables can be used to 

make images and containers more 

dynamic / configurable



Read-Only, Read-Write & Volumes

Images Containers

Read-only

Once created, you need to re-build 
them to change something

Application data (e.g. user data) is 
NOT stored in images

Read & Write

A running container can store data 
(e.g. incoming user data)

But: Data is lost when a container 
stops

Solution for persistent data: Volumes


