
Images vs Containers

Docker

Images Containers

The running “unit of software”
Templates/ Blueprints for 

containers

Contains code + required tools/ 
runtimes

Multiple containers can be 
created based on one image

Layer-based, read-only, no 
application data is stored

Top layer, read & write access, 
data is lost on shutdown



One Image, Multiple Containers

Image

NodeJS App Code

NodeJS Environment

Container Container Container

Running NodeJS 
App

Running NodeJS 
App

Running NodeJS 
App



Finding / Creating Images

We need an Image!

Create your own, custom 
Image

Use an existing, pre-built 
Image

e.g. via Docker Hub
Write your own Dockerfile
(based on another Image)



Images & Image Layers

Debian OS

Node

App Code, Config, Setup Steps & Run 
Command

Custom Image

Third-party or 
other custom 

Image

Third-party or 
other custom 

Image

Important: Every 
command is a layer on 

its own!

Layers are shared 
between images

(this keeps Docker 

images and containers 

small)



A Container Is Based On An Image

Instruction #1: Image Layer 1

Instruction #2: Image Layer 2

Instruction #3: Image Layer 3

Container Layer (read-write)

Read-only

ImageRead-write

Container

When you re-build an image, only the 
layers that changed will be re-built



Multiple Containers Can Be Based On The Same Image

Image Layer 1

Image Layer 2

Image Layer 3

Container Layer 1 Container Layer 2 Container Layer 3

3 different containers, separated data



Where To Get Images

Docker Hub Build your Ownor

Typically, you’ll combine both

Cloud registry for third-party 
images

You can pull them to run as 
container

You can build your own images 
based on other images

Configure all tools and setup 
steps you need in your containers

Possibly share with other 
developers

Combine third-party images with 
custom setup steps and tools



Images & Containers – First Summary

Image

<Our Code>

<Our Code>

Environment

Container

<Our Code>

Environment

Container

<Our Code>

Environment



Managing Images & Containers

Images Containers

Can be tagged (named)
-t, docker tag …

Can be listed
docker images

Can be analyzed
docker image inspect

Can be removed
docker rmi, docker prune

Can be named
--name

Can be configured in detail
see --help

Can be listed
docker ps

Can be removed
docker rm

Add --help to see all options



Understanding Image Tags

name tag:

Combined: A unique identifier

Defines a group of, 
possible more 

specialized, images

Defines a specialized 
image within a group of 

images

Example: “node” Example: “14”



Sharing Images & Containers

Everyone who has an image, can create 
containers based on the image!

Share a Dockerfile Share a Built Image

Simply run docker build .

Important: The Dockerfile
instructions might need 

surrounding files / folders (e.g. 

source code)

Download an image, run a 
container based on it

No build step required, everything 
is included in the image already!



Sharing via Docker Hub or Private Registry

Docker Hub Private Registry

Free Usage Possible!

Official Docker Image Registry

Public, private and “official” 
Images

Share: docker push IMAGE_NAME

Use: docker pull IMAGE_NAME

Any provider / registry you want to 
use

Only your own (or team) Images

Needs to be 
HOST:NAME to 

talk to private 

registry



Key Commands

docker run

docker push / pull

docker build

Create and start a new container based on an image

docker create Create a new container

docker stop

docker start

docker rm

docker rmi

Stop a running container
Start a stopped container

Removed a stopped container (delete it)

Share / Download a remote image

Build a new image based on a Dockerfile

Remove a local image



Module Summary

Docker is all about Images & Containers

Images are the templates / blueprints 
for Containers, multiple Containers can 

be created based on one Image.

Images are either downloaded (docker 
pull) or created with a Dockerfile and 

docker build.

Images contain multiple layers (1 
Instruction = 1 Layer) to optimize build 

speed (caching!) and re-usability

Containers are created with docker 
run IMAGE and can be configured with 

various options / flags

Containers can be listed (docker ps), 
removed (docker rm) and stopped + 

started (docker stop / start)

Images can also be listed (docker 
images), removed (docker rmi, 

docker image prune) and shared
(docker push / pull)


