
Containers Are Always Great!

In Development In Production

Reproducible environment, easy to 
share and use

No surprises! 
What works on your machine (in a container) will also work after deployment

Isolated, standalone environmentIsolated, standalone environment

Reproducible environment, easy to 
share and use



Development to Production: Things To Watch Out For

Bind Mounts shouldn’t be used in 
Production!

Containerized apps might need a build 
step (e.g. React apps)

Multi-Container projects might need to 
be split (or should be split) across multiple 

hosts / remote machines

Trade-offs between control and 
responsibility might be worth it!



Bind Mounts, Volumes & COPY

In Development In Production

Use “Bind Mounts” to provide your 
local host project files to the running 

container

Allows for instant updates without 
restarting the container

A container should really work 
standalone, you should NOT have 

source code on your remote machine

Containers should encapsulate the 
runtime environment but not 

necessarily the code

Use COPY to copy a code snapshot 
into the image

Image / Container is the 
“single source of truth”

Ensures that every image runs 
without any extra, surrounding 

configuration or code



A Basic First Example: Standalone NodeJS App

Just NodeJS, no database, nothing else

1 Image & Container

Possible Deployment 
Approach

Install Docker on a remote host (e.g. via SSH), push and 
pull image, run container based on image on remote host

Container Registry

Development 
Machine

End User 
Machine

Remote Machine / Host



Hosting Providers

There are hundreds and thousands of Docker-supporting hosting providers out there!

Amazon Web Services Microsoft Azure Google Cloud



Example: Deploy to AWS EC2

AWS EC2 is a service that allows you to spin up and manage 
your own remote machines

1
Create and launch EC2 instance, VPC and 

security group

2
Configure security group to expose all required 

ports to WWW

3
Connect to instance (SSH), install Docker and run 

container



Deploy Source Code vs Image

Option 1: Deploy Source Option 2: Deploy Built Image

Build image on remote machine
Build image before deployment (e.g. on 

local machine)

Push source code to remote machine, 
run docker build and then docker 

run

Just execute docker run

Unnecessary complexity Avoid unnecessary remote server work



Docker Is Awesome!

Only Docker needs to be installed (no other 
runtimes or tools!)

Uploading our “code” is very easy

It’s the exact same app and environment as on 
our machine



“Do-it-yourself” Approach – Disadvantages

We fully “own” the remote machine è We’re 
responsible for it (and it’s security)!

SSHing into the machine to manage it can be 
annoying

Keep essentials 
software updated

Manage network 
and security groups / 

firewall



A Managed / Automated Approach

Your Own Remote Machines
e.g. AWS EC2

Managed Remote Machines
e.g. AWS ECS

You need to create them, manage 
them, keep them updated, monitor 

them, scale them etc.

Creation, management, updating is 
handled automatically, monitoring 

and scaling is simplified

Great if you’re an experienced 
admin / cloud expert

Great if you simply want to deploy 
your app / containers



A Note about Databases

You can absolutely manage your own Database containers

Scaling & managing 
availability can be 

challenging

Performance (also 
during traffic spikes) 

could be bad

Taking care about 
backups and security

can be challenging

Consider using a managed Database service (e.g. AWS 
RDS, MongoDB Atlas, …)

but …



Our Current App Architecture

AWS ECS

ECS Task

NodeJS REST API MongoDB

AWS EFS Storage

Volume

A
W

S
 L

o
a

d
 B

a
la

n
c
e

r



Our New App Architecture

AWS ECS

ECS Task

NodeJS REST API

MongoDB

Manages data, 

availability, 
backups, …

A
W

S
 L

o
a

d
 B

a
la

n
c
e

r

MongoDB Atlas



Our Final App Architecture

AWS ECS

ECS Task
A

W
S

 L
o

a
d

 B
a

la
n

c
e

r

NodeJS REST API

MongoDB Atlas

React SPA



Our Final App Architecture

AWS ECS

ECS Task
A

W
S

 L
o

a
d

 B
a

la
n

c
e

r

NodeJS REST API

MongoDB Atlas

React SPA

ECS Task

A
W

S
 L

o
a

d
 

B
a

la
n

c
e

r



Apps with Development Servers & Build Steps

Some apps / projects require a build step

e.g. optimization script that needs to be executed AFTER

development but BEFORE deployment

Development Setup Production SetupIS NOT EQUAL TO

(not entirely)

e.g. ReactJS App

Uses live-reloading 
development server, uses 

unoptimized / unsupported 

JS features

No attached server, 
optimized, fully browser-

compatible code

Build Step / Script



Introducing Multi-Stage Builds

One Dockerfile, Multiple Build / Setup Steps (“Stages”)

Stages can copy results (created files 
and folders) from each other

You can either build the complete 
image or select individual stages



From AWS To Other Providers

AWS was just the example provider in this section!

Manual installation of 
Docker + management of the 

underlying server

Managed Container/ Docker 
services like ECS

Possible with any provider 
that gives you fully controlled 

remote hosts / instances

Many cloud providers offer 
managed Docker / Container 

services



Can We Do Better?

Containers allow us to encapsulate app 
code and environment for both 

development and production

Thinking about production forces us to build 
containers / app code with more scenarios in 

mind (e.g. multi-stage builds)

If we DON’T manage Docker and remote 
machines manually, we must work with the 

tools and rules imposed by the managed 

service

Different cloud providers == Different rules

Depending on provider, features like load 
balancing might be challenging to implement

Kubernetes


