In Development

Isolated, standalone environment

Isolated, standalone environment

Reproducible environment, easy to
share and use

Reproducible environment, easy to
share and use

No surprises!
What works on your machine (in a container)

will also work after deployment

Bind Mounts shouldn’t be used in
Production!

o
[

J
\

Multi-Container projects might need to
be split (or should be split) across multiple
hosts / remote machines

/

_

J

_

Containerized apps might need a build
step (e.g. React apps)

\

J

/

Trade-offs between control and
responsibility might be worth it!

\

In Development

Containers should encapsulate the
runtime environment but not

necessarily the code

Use “Bind Mounts” to provide your
local host project files to the running
container

Allows for instant updates without
restarting the container

r

A container should really work
standalone, you should NOT have
source code on your remote machine

r

Use COPY to copy a code snapshot
into the image

\

J

Ensures that every image runs
without any extra, surrounding
configuration or code

~

Just Node]S, no database, nothing else

Possible Deployment Install Docker on a remote host (e.g. via SSH), push and
Approach pull image, run container based on image on remote host

[Container Registry] [Remote Machine / Host]

O— &8

Development D
Machine

There are hundreds and thousands of Docker-supporting hosting providers out there!

s] 5

AWS EC2is a

service that allows you to spin up and manage
your own remote machines

L

Create and launch EC2 instance, VPC and
security group

r

&

Configure security group to expose all required
ports to WWW

e

L

Connect to instance (SSH), install Docker and run
container

\

J

Option 1: Deploy Source

Build image on remote machine

Push source code to remote machine,
run docker build and then docker
run

Unnecessary complexity

Only Docker needs to be installed (no other
runtimes or tools!)

We fully “own” the remote machine = We're
responsible for it (and it’s security)!

SSHing into the machine to manage it can be
annoying

(22—

Your Own Remote Machines
e.g. AWS EC2

‘
/]
<

Managed Remote Machines
e.g. AWS ECS

You can absolutely manage your own Database containers

Consider using a managed Database service (e.g. AWS
RDS, MongoDB Atlas, ...)

[Node)S REST AP]

J

MongoDB

Some apps / projects require a build step

e.g. optimization script that needs to be executed AFTER
development but BEFORE deployment

é)

Build Step / Script

\ S

[One Dockerfile, Multiple Build / Setup Steps (“Stages”) }

2

AWS was just the example provider in this section!

Containers allow us to encapsulate app
code and environment for both

development and production

Different cloud providers == Different rules

Depending on provider, features like load
balancing might be challenging to implement

Kubernetes

