
What is an Apache
Kafka Topic?
A Kafka Topic is a logical collection of messages that are produced and
consumed by Kafka applications. A message is a piece of data that
contains some information, such as an event, a record, or a notification.
For example, a message could be a product created event, which
contains the details of a new product that was added to an online store.

A Kafka Topic has a unique name that identifies it in a Kafka cluster. A
Kafka cluster is a group of servers, called brokers, that store and manage
the topics and messages. A Kafka application can connect to a Kafka
cluster and interact with the topics and messages.

What is Topic Partition?
A Kafka Topic is divided into one or more partitions, each of which
stores a subset of messages in an ordered sequence. A partition is a
physical unit of storage and processing in a Kafka broker. Each partition
has a unique identifier, called a partition ID, that is assigned by the
broker.

The number of partitions for a topic is determined when the topic is
created, and it can be changed later. The number of partitions affects the



scalability, parallelism, fault-tolerance, and ordering guarantees of a
topic.

● Scalability: The more partitions a topic has, the more messages it
can store and handle. A topic with many partitions can be
distributed across multiple brokers, which increases the storage
capacity and performance of the topic.

● Parallelism: The more partitions a topic has, the more producers
and consumers can interact with it concurrently. A topic with many
partitions can have multiple producers sending messages to
different partitions, and multiple consumers receiving messages
from different partitions. This increases the throughput and
efficiency of the topic.

● Fault-tolerance: The more partitions a topic has, the more resilient
it is to failures. A topic with many partitions can have replicas,
which are copies of the partitions stored on different brokers. If a
broker fails, the replicas can take over and continue serving the
messages. This increases the availability and reliability of the topic.

● Ordering guarantees: The more partitions a topic has, the less
strict the ordering guarantees are. A topic with many partitions can
only guarantee the order of messages within each partition, but not
across partitions. This means that messages from different
partitions may be delivered out of order to the consumers. This
may or may not be acceptable, depending on the use case of the
topic.

How to create topic?
To create a topic in a Kafka cluster, we can use the kafka-topics.sh
command line tool, which is provided by Kafka. This tool allows us to



perform various operations on topics, such as creating, deleting, listing,
and describing topics.

To create a topic, we need to specify the following parameters:

● --bootstrap-server: The address of one or more brokers in the
Kafka cluster that we want to connect to. For example,
localhost:9092.

● --create: The flag that indicates that we want to create a topic.
● --topic: The name of the topic that we want to create. For

example, product-created-events-topic.
● --partitions: The number of partitions that we want to create

for the topic. For example, 3.
● --replication-factor: The number of replicas that we want to

create for each partition of the topic. For example, 2.

For example, the following command creates a topic named
product-created-events-topic with 3 partitions and 2 replicas in a
Kafka cluster with a broker at localhost:9092:

kafka-topics.sh --bootstrap-server localhost:9092 --create --topic
product-created-events-topic --partitions 3 --replication-factor 2

If the topic is created successfully, the tool will print a confirmation
message, such as:

Created topic product-created-events-topic.

If the topic already exists, or if there is an error, the tool will print an error
message, such as:

Topic 'product-created-events-topic' already exists.



How to create topic with
partitions?
As I explained in the previous section, a Kafka Topic is divided into one
or more partitions, each of which stores a subset of messages in an
ordered sequence. The number of partitions for a topic affects its
scalability, parallelism, fault-tolerance, and ordering guarantees.

To create a topic with partitions, you can use the kafka-topics.sh
command line tool, which I introduced in the previous section. This tool
allows you to perform various operations on topics, such as creating,
deleting, listing, and describing topics.

To create a topic with partitions, you need to specify the following
parameters:

● --bootstrap-server: The address of one or more brokers in the
Kafka cluster that you want to connect to. For example,
localhost:9092.

● --create: The flag that indicates that you want to create a topic.
● --topic: The name of the topic that you want to create. For

example, product-created-events-topic.
● --partitions: The number of partitions that you want to create

for the topic. For example, 3.

For example, the following command creates a topic named
product-created-events-topic with 3 partitions in a Kafka cluster
with a broker at localhost:9092:



kafka-topics.sh --bootstrap-server localhost:9092 --create --topic
product-created-events-topic --partitions 3

If the topic is created successfully, the tool will print a confirmation
message, such as:

Created topic product-created-events-topic.

If the topic already exists, or if there is an error, the tool will print an error
message, such as:

Topic 'product-created-events-topic' already exists.

How to update topic?
Sometimes, you may want to change the configuration and properties of
an existing topic, such as changing the number of partitions, the
replication factor, the retention policy, and other parameters. You can do
this by using the kafka-topics.sh command line tool, which I
introduced in the previous sections. This tool allows you to perform
various operations on topics, such as creating, deleting, listing, and
describing topics.

To update a topic, you need to specify the following parameters:

● --bootstrap-server: The address of one or more brokers in the
Kafka cluster that you want to connect to. For example,
localhost:9092.

● --alter: The flag that indicates that you want to update a topic.
● --topic: The name of the topic that you want to update. For

example, product-created-events-topic.



● --config: A comma-separated list of key=value pairs, where
key is the name of the parameter that you want to update, and
value is the new value that you want to assign to it. For example,
retention.ms=43200000.

For example, the following command updates the retention policy of the
topic named product-created-events-topic to 12 hours in a Kafka
cluster with a broker at localhost:9092:

kafka-topics.sh --bootstrap-server localhost:9092 --alter --topic
product-created-events-topic --config retention.ms=43200000

There are many parameters that you can update for a topic, such as the
number of partitions, the replication factor, the cleanup policy, the
compression type, and more. You can find the full list of topic
configurations and their descriptions in the Kafka topic configuration
reference.

In the following subsections, I will show you how to update some of the
common parameters for a topic.

How to update topic partitions?

The number of partitions for a topic determines how many subsets of
messages the topic is divided into. The number of partitions affects the
scalability, parallelism, fault-tolerance, and ordering guarantees of a
topic.

To update the number of partitions for a topic, you can use the
--partitions option in the kafka-topics.sh command line tool,
and specify the new number of partitions that you want to assign to the
topic. For example, the following command increases the number of

https://docs.confluent.io/platform/current/installation/configuration/topic-configs.html
https://docs.confluent.io/platform/current/installation/configuration/topic-configs.html


partitions for the topic named product-created-events-topic to 6
in a Kafka cluster with a broker at localhost:9092:

kafka-topics.sh --bootstrap-server localhost:9092 --alter --topic
product-created-events-topic --partitions 6

Note that you can only increase the number of partitions for a topic, but
not decrease it. This is because reducing the number of partitions would
cause data loss and inconsistency. If you want to reduce the number of
partitions for a topic, you have to delete the topic and recreate it with the
desired number of partitions.

How to update topic replication factor?

The replication factor for a topic determines how many copies of each
partition are stored on different brokers. The replication factor affects
the fault-tolerance and availability of a topic.

To update the replication factor for a topic, you can use the
--replication-factor option in the kafka-topics.sh command
line tool, and specify the new replication factor that you want to assign
to the topic. For example, the following command increases the
replication factor for the topic named
product-created-events-topic to 3 in a Kafka cluster with a
broker at localhost:9092:

kafka-topics.sh --bootstrap-server localhost:9092 --alter --topic
product-created-events-topic --replication-factor 3

Note that you can only increase the replication factor for a topic, but not
decrease it. This is because reducing the replication factor would cause
data loss and inconsistency. If you want to reduce the replication factor



for a topic, you have to delete the topic and recreate it with the desired
replication factor.

How to update retention policy?

The retention policy for a topic determines how long the messages in the
topic are retained before they are deleted. The retention policy affects
the storage capacity and performance of a topic.

To update the retention policy for a topic, you can use the --config
option in the kafka-topics.sh command line tool, and specify the
new retention policy that you want to assign to the topic. There are two
ways to specify the retention policy for a topic: by time or by size.

● To specify the retention policy by time, you can use the
retention.ms parameter, and specify the maximum time in

milliseconds that a message can remain in the topic before it is
deleted. For example, the following command sets the retention
policy for the topic named product-created-events-topic to

12 hours in a Kafka cluster with a broker at localhost:9092:

● kafka-topics.sh --bootstrap-server localhost:9092 --alter --topic

product-created-events-topic --config retention.ms=43200000

● To specify the retention policy by size, you can use the
retention.bytes parameter, and specify the maximum size in

bytes that the topic can occupy before the oldest messages are
deleted. For example, the following command sets the retention
policy for the topic named product-created-events-topic to

1 GB in a Kafka cluster with a broker at localhost:9092:

● kafka-topics.sh --bootstrap-server localhost:9092 --alter --topic

product-created-events-topic --config retention.bytes=1073741824



You can also use both parameters together, and the topic will be deleted
when either of the conditions is met.

How to delete topic?

Sometimes, you may want to delete a topic from a Kafka cluster, either
because you no longer need it, or because you want to recreate it with
different settings. You can do this by using the kafka-topics.sh
command line tool, which I introduced in the previous sections. This tool
allows you to perform various operations on topics, such as creating,
updating, listing, and describing topics.

To delete a topic, you need to specify the following parameters:

● --bootstrap-server: The address of one or more brokers in the
Kafka cluster that you want to connect to. For example,
localhost:9092.

● --delete: The flag that indicates that you want to delete a topic.
● --topic: The name of the topic that you want to delete. For

example, product-created-events-topic.

For example, the following command deletes the topic named
product-created-events-topic from a Kafka cluster with a broker
at localhost:9092:

kafka-topics.sh --bootstrap-server localhost:9092 --delete --topic
product-created-events-topic

If the topic is deleted successfully, the tool will print a confirmation
message, such as:

Topic product-created-events-topic is marked for deletion.



If the topic does not exist, or if there is an error, the tool will print an error
message, such as:

Topic 'product-created-events-topic' does not exist.

How to read messages from the topic?

A Kafka Consumer is an application that receives messages from one or
more topics in a Kafka cluster. A consumer can subscribe to one or more
topics, and consume messages from them in a streaming or batch
manner. A consumer can also specify the offset, or the position, from
which it wants to start consuming messages from a topic. For example,
a consumer can start from the beginning, the end, or a specific offset of
a topic.

To read messages from a topic, you can use the
kafka-console-consumer.sh command line tool, which I introduced
in the previous sections. This tool allows you to consume messages
from a topic and print them to the console (standard output). By default,
it outputs the raw bytes in the message with no formatting (using the
Default Formatter).

To read messages from a topic, you need to specify the following
parameters:

● --bootstrap-server: The address of one or more brokers in the
Kafka cluster that you want to connect to. For example,
localhost:9092.

● --topic: The name of the topic that you want to read messages
from. For example, product-created-events-topic.

● --from-beginning: The flag that indicates that you want to read
messages from the beginning of the topic. If you omit this flag, the



tool will read messages from the end of the topic, or the latest
offset.

● --property: A comma-separated list of key=value pairs, where
key is the name of the property that you want to set, and value is
the value that you want to assign to it. For example,
print.key=true,key.separator=-. You can use this option to
customize the output format of the messages, such as showing
the key and the value, or changing the separator between them.

For example, the following command reads messages from the topic
named product-created-events-topic from the beginning of the
topic, and shows the key and the value of each message, separated by a
dash, in a Kafka cluster with a broker at localhost:9092:

kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic
product-created-events-topic --from-beginning --property
print.key=true,key.separator=-

If the tool successfully connects to the topic and starts consuming
messages, it will print them to the console.


