
Consuming messages from a Kafka topic
from the beginning
In this section, you will learn how to consume messages from a Kafka topic using the
kafka-console-consumer script. This script allows you to read messages from a
topic and display them on the terminal.

Prerequisites
Before you start, you need to have the following:

● Apache Kafka installed on your machine.
● A Kafka topic with some messages in it. You can create a topic and produce

some messages using the kafka-topics and kafka-console-producer
scripts, as explained in the previous lessons.

● A terminal window open and ready to run commands.

Steps
To consume messages from a Kafka topic, follow these steps:

1. Navigate to the Kafka folder where you installed Kafka. For example, if you
installed Kafka in /Users/sergeykargopolov/kafka, run this command:

cd /Users/sergeykargopolov/kafka

2. Navigate to the bin folder where the Kafka CLI scripts are located. Run this
command:

cd bin

3. To consume messages from a Kafka topic, run the kafka-console-consumer
script with the following parameters:

● --topic: The name of the topic you want to read messages from. For example,
my-topic.



● --from-beginning: A flag that tells the consumer to read all messages from
the topic, starting from the first one. If you omit this flag, the consumer will only
read new messages that arrive after you start the script.

● --bootstrap-server: The address of one or more Kafka servers that you
want to connect to. For example, localhost:9092.

For example, to consume messages from a topic called my-topic from the beginning,
run this command:

bin/kafka-console-consumer.sh --topic my-topic --from-beginning
--bootstrap-server localhost:9092

4. Press Enter to run the command. You should see the messages from the topic
displayed on the terminal, one per line. For example:

Hello world
Hello Kafka
Hello world 2
Hello world 3
Hello world 4

Notice that the script does not exit after reading all the messages. It keeps running and
waiting for more messages to arrive. As soon as a new message is sent to the topic, the
consumer will read it and display it on the terminal.

You can start more consumers and run the same command to consume messages
from the same topic.

Each consumer will read all messages from the topic, regardless of whether they have
been consumed by other consumers or not. This is because Kafka does not delete
messages from a topic after they are consumed. It keeps them in the topic for a
configurable period of time, so that other consumers can read them as well.

To stop the consumer script, press Ctrl+C on the terminal. This will terminate the
script and disconnect from the Kafka cluster.

You’re welcome. I’m glad to help you with your tutorial.�



Here is the new section that I created based on the text you provided. I tried to keep it
brief and concise as a summary.

Consuming new messages only
In this section, you will learn how to consume only new messages from a Kafka topic
using the kafka-console-consumer script. This means that you will not read any
messages that were sent to the topic before you start the script.

To consume only new messages from a Kafka topic, follow these steps:

1. Open a terminal window and navigate to the bin folder where the Kafka CLI
scripts are located.

2. Run the kafka-console-consumer script with the following parameters:
● --topic: The name of the topic you want to read messages from. For example,

my-topic.
● --bootstrap-server: The address of one or more Kafka servers that you

want to connect to. For example, localhost:9092.

For example, to consume only new messages from a topic called my-topic, run this
command:

bin/kafka-console-consumer.sh --topic my-topic
--bootstrap-server localhost:9092

Consuming Key:Value Pair Messages from a
Kafka topic
In this section, you will learn how to consume messages that are sent as key:value pairs
from a Kafka topic. A key:value pair is a message that has two parts: a key and a value,
separated by a delimiter.

To consume key:value pair messages, you need to run the kafka-console-consumer
script with the same parameters as for regular messages, plus two optional parameters
to print the key and the value:



● --property print.key=true: To print the key part of the message.
● --property print.value=true: To print the value part of the message.

For example, to consume key:value pair messages from a topic called my-topic from
the beginning and print both the key and the value, run this command:

bin/kafka-console-consumer.sh --topic my-topic --from-beginning
--bootstrap-server localhost:9092 --property print.key=true
--property print.value=true

By default, the consumer will only print the value part of the message, not the key. You
can change this by setting the print.key and print.value properties to true or
false as you wish.

The key:value pair messages are stored in the topic with the delimiter that you specified
when you produced them. For example, if you used a colon (:) as the delimiter, the
messages will be stored as key:value in the topic. The consumer will display the key
and the value separated by a tab on the terminal. For example:

firstName Sergey

lastName Kargopolov

You can consume key:value pair messages from any topic that you create or subscribe
to, as long as the producer sends them in the right format.

Consuming messages in order
In this section, you will learn how to store and consume messages in Kafka topic, so
that they are read in the same order they were sent. This is useful when you want to
preserve the sequence of events or transactions in your messages.

To store messages in order, you need to use the same key for all the messages that
belong to the same sequence. The key can be any string that identifies or groups the
messages, such as a user ID or a product ID. Kafka will use the key to determine which
partition to store the message in. Messages with the same key will be stored in the
same partition and will be read in order.

To produce messages with a key, run the kafka-console-producer script with the
following parameters:



● --topic: The name of the topic you want to send messages to. For example,
messages-order.

● --bootstrap-server: The address of one or more Kafka servers that you
want to connect to. For example, localhost:9092.

● --property parse.key=true: A flag that tells the producer to enable the
key:value pair support.

● --property key.separator=:: A parameter that specifies the separator
between the key and the value. You can use any character as the separator, but
make sure it is not part of the key or the value.

For example, to produce messages with a key and a colon (:) as the separator to a topic
called messages-order, run this command:

./kafka-console-producer.sh --bootstrap-server localhost:9092
--topic messages-order --property parse.key=true --property
key.separator=:

Press Enter to run the command. You are ready to start sending messages. Type a
message in the format key:value and press Enter to send it. For example, to send a
message with the key 1 and the value First message, type this:

1:First message

Send more messages with the same key. For example:

1:Second message

1:Third message

1:Fourth message

1:Fifth message

1:Sixth message



Notice that you are using the same key for all the messages. This means that they will
be stored in the same partition and will be read in order.

To test this, open another terminal window and run the kafka-console-consumer
script to consume messages from the same topic. For example, run this command:

./kafka-console-consumer.sh --topic messages-order
--bootstrap-server localhost:9092 --from-beginning --property
print.key=true --property print.value=true

Press Enter to run the command. You should see the messages from the topic
displayed on the terminal, one per line, with the key and the value separated by a tab. For
example:

1 First message

1 Second message

1 Third message

1 Fourth message

1 Fifth message

1 Sixth message

Notice that the messages are displayed in the same order they were sent. This is
because they have the same key and are stored in the same partition.

To stop the producer or the consumer script, press Ctrl+C on the terminal. This will
terminate the script and disconnect from the Kafka cluster.


