
Undoing Stuff &
Time Traveling

The git checkout command is like a Git Swiss Army knife.

Many developers think it is overloaded, which is what lead to
the addition of the git switch and git restore commands

We can use checkout to create branches, switch to new
branches, restore files, and undo history!

Checkout

We can use git checkout commit <commit-hash>

to view a previous commit.

Remember, you can use the git log command to view
commit hashes. We just need the first 7 digits of a
commit hash.

Don't panic when you see the following message...

Checkout

git checkout d8194d6❯

Detached HEAD??

You are in 'detached HEAD' state. You can
look around, make experimental changes and
commit them, and you can discard any commits
you make in this state without impacting any

branches by switching back to a branch.

What On Earth
Is Going On??

987fac... d8194d6 171615...

Master

HEAD
Usually, HEAD points to a specific branch reference
rather than a particular commit.

987fac... d8194d6 171615...

Master

HEAD

HEAD is a pointer to the current branch reference

The branch reference is a pointer to the last

commit made on a particular branch

How It Works

987fac... d8194d6 171615...

Master

HEAD

f9e321...

When we make a new commit, the branch reference
is updated to reflect the new commit.
The HEAD remains the same, because it's pointing
at the branch reference

987fac... d8194d6 171615...

Master

HEAD

f9e321...

When we make a new commit, the branch pointer
is updated to reflect the new commit.
The HEAD remains the same, because it's
pointing at the branch reference

HEAD still points to master

master

HEAD

bugfix

When you switch branches, HEAD is updated to
point to the specific branch reference.

Here, HEAD is pointing to master

master

HEAD

bugfix

If we switch to the bugfix branch, HEAD is now
pointing at the bugfix reference.

git switch bugfix❯

master

HEAD

bugfix

This is all to say that HEAD usually refers
to a branch NOT a specific commit.

Back to this
Detached HEAD thing
Back to this
Detached HEAD thing

987fac... d8194d6 171615...

Master

HEAD

987fac... d8194d6 171615...

MasterHEAD

git checkout d8194d6❯

When we checkout a particular commit,
HEAD points at that commit rather than
at the branch pointer.

DETACHED HEAD!

Stay in detached HEAD to examine the contents of
the old commit. Poke around, view the files, etc.
Leave and go back to wherever you were before -
reattach the HEAD
Create a new branch and switch to it. You can now
make and save changes, since HEAD is no longer
detached.

Don't panic when this happens! It's not a bad thing!

You have a couple options:

1.

2.

3.

Detached HEAD
git checkout <commit-hash>❯

987fac... d8194d6 171615...

MasterHEAD

git checkout d8194d6❯

If you checkout an old commit and
decide you want to return to where you
were before....

DETACHED HEAD!

987fac... d8194d6 171615...

Master

HEAD

git switch master❯

Simply switch back to whatever branch you
were on before (master in this example).

RE-ATTACHED HEAD!

987fac... d8194d6 171615...

MasterHEAD
Suppose you want to go back to an old
commit and make some new changes

987fac... d8194d6 171615...

MasterHEAD

Checkout the old commit.
Now in detached HEAD state.

git checkout d8194d6❯

While in detached HEAD,
Make a new branch and switch to it.

Head is now back to pointing at a
branch reference!

git switch -c newbranch❯

987fac... d8194d6 171615...

Master

HEAD

newbranch

Now on the new branch, make as many
new commits as you want!

It's like you time traveled! We went back
to an old commit and made a new
branch based on it.

git add .❯

987fac... d8194d6 171615...

Master

HEAD

4a4d6

newbranch

❯ git commit -m "new commit"

git checkout supports a slightly odd syntax for
referencing previous commits relative to a particular
commit.

HEAD~1 refers to the commit before HEAD (parent)
HEAD~2 refers to 2 commits before HEAD (grandparent)

This is not essential, but I wanted to mention it because
it's quite weird looking if you've never seen it.

Checkout

git checkout HEAD~1❯

987fac... d8194d6 171615...

Master

HEAD

f9e321...

HEAD~1HEAD~2HEAD~3

Suppose you've made some changes to a file but don't
want to keep them. To revert the file back to whatever
it looked like when you last committed, you can use:

git checkout HEAD <filename> to discard any changes
in that file, reverting back to the HEAD.

Discarding
Changes

git checkout HEAD <file>❯

Here's another shorter option to revert a file...

Rather than typing HEAD, you can substitute -- followed
by the file(s) you want to restore.

Another Option
git checkout -- <file>❯

git restore is a brand new Git command that helps with
undoing operations.

Because it is so new, most of the existing Git tutorials
and books do not mention it, but it is worth knowing!

Recall that git checkout does a million different things,
which many git users find very confusing. git restore was
introduced alongside git switch as alternatives to some
of the uses for checkout.

Restore

Suppose you've made some changes to a file since your
last commit. You've saved the file but then realize you
definitely do NOT want those changes anymore!

To restore the file to the contents in the HEAD,
use git restore <file-name>

Unmodifying Files
with Restore

git restore <file-name>❯

NOTE: The above command is not "undoable"
If you have uncommited changes in the file,
they will be lost!

git restore <file-name> restores using HEAD as the
default source, but we can change that using
the --source option.

For example, git restore --source HEAD~1 home.html

will restore the contents of home.html to its state from
the commit prior to HEAD. You can also use a
particular commit hash as the source.

Unmodifying Files
with Restore

git restore --source HEAD~1 app.js❯

If you have accidentally added a file to your
staging area with git add and you don't wish to
include it in the next commit, you can use git restore

to remove it from staging.

Use the --staged option like this:
git restore --staged app.js

Unstaging Files
with Restore

git restore --staged <file-name>❯

git status reminds you what to use!

Feeling Confused?

Suppose you've just made a couple of commits on the
master branch, but you actually meant to make them on
a separate branch instead. To undo those commits, you
can use git reset.

git reset <commit-hash> will reset the repo back to a
specific commit. The commits are gone

Git Reset
git reset <commit-hash>❯

Working Directory Staging Area Repository

bb43f1f

created lisa.jpg

modified about.html

0026739

39c3fdd

OH NO! I didn't mean to make that commit here!

Working Directory Staging Area Repository

bb43f1f

created lisa.jpg

modified about.html

0026739

git reset 0026739❯

Working Directory Staging Area Repository

bb43f1f

created lisa.jpg

modified about.html

0026739

git reset 0026739❯

Commit(s) are gone

The file contents are still here!

If you want to undo both the commits AND the actual
changes in your files, you can use the --hard option.

for example, git reset --hard HEAD~1 will delete the
last commit and associated changes.

Reset --hard
git reset --hard <commit>❯

Working Directory Staging Area Repository

bb43f1f

created lisa.jpg

modified about.html

0026739

39c3fdd

OH NO! I don't want that commit OR the changes

Working Directory Staging Area Repository

bb43f1f

0026739

git reset --hard 0026739❯

Commit(s) are gone

The changes in the file(s)
are gone too!

Yet another similar sounding and
confusing command that has to do
with undoing changes.

git revert

git revert is similar to git reset in that they both "undo"
changes, but they accomplish it in different ways.

git reset actually moves the branch pointer backwards,
eliminating commits.

git revert instead creates a brand new commit which
reverses/undos the changes from a commit. Because it
results in a new commit, you will be prompted to enter a
commit message.

Git Revert

git revert <commit-hash>❯

Master

HEAD

"Undoing"
With Reset

Master

HEAD

git reset HEAD~2❯

The branch pointer is moved back to an earlier
commit, erasing the 2 later commits

Master

HEAD

"Undoing"
With Revert

Master

HEAD
git revert 51494a6❯

This new commit
reverses the changes

from 51494a6

51494a6

Both git reset and git revert help us reverse changes, but there is
a significant difference when it comes to collaboration (which
we have yet to discuss but is coming up soon!)

If you want to reverse some commits that other people already

have on their machines, you should use revert.

If you want to reverse commits that you haven't shared with
others, use reset and no one will ever know!

Which One
Should I Use?

Master

HEAD

Master

HEAD

Master

HEAD

1 2 3

1

1 2 3 4

My Local Repo

2 3

Master

HEAD

Master

HEAD

Master

HEAD

1 2 3

1

1 2 3 4

My Changes

I use git reset to remove commits that
I already shared with my team!

Master

HEAD

Master

HEAD

Master

HEAD

1 2 3

1

1 2 3 4

My Changes

This makes their lives harder. I altered
history that they already have. BAD!

Master

HEAD

Master

HEAD

Master

HEAD

1 2 3

1

1 2 3 4

My Local Repo

2 3

Let's try again...

Master

HEAD

Master

HEAD

1 2 3

1 2 3 4

Master

HEAD

1 2 3

My Changes

I use git revert to reverse the same
commits as before, by ADDING a

new commit to the chain

Master

HEAD

Master

HEAD

1 2 3

1 2 3 4

Master

HEAD

1 2 3

My Changes

My team can merge in the new
"undo" commit without issue.

I didn't alter history.

