
Fetching
& Pulling

A Closer Look
At Cloning

master

Github Repo My Computer

Github Repo

master master

origin/master

My Computer
git clone

Github Repo

master master

origin/master

My Computer
A regular branch reference.
I can move this around myself.

Github Repo

master master

origin/master

My Computer

This is a "Remote Tracking Branch". It's a
reference to the state of the master branch
on the remote. I can't move this myself. It's
like a bookmark pointing to the last known
commit on the master branch on origin

Remote
Tracking Branches

origin/master references the state of the master
branch on the remote repo named origin.
upstream/logoRedesign references the state of
the logoRedesign branch on the remote named
upstream (a common remote name)

"At the time you last communicated with this remote
repository, here is where x branch was pointing"

They follow this pattern <remote>/<branch>.

Run git branch -r to view the remote
branches our local repository knows about.

Remote Branches
git branch -r❯

origin/master

master

origin/master

My Computer

master

origin/master

My Computer
I make a new commit locally. My master
branch reference updates, like always.

The remote reference stays the same

master

origin/master

My Computer
I make another commit, and the local

branch reference moves again.

Remote reference doesn't move!

On branch master
Your branch is ahead of 'origin/master' by 2
commits.
 (use "git push" to publish your local commits)

❯git status

When I run git status

master

origin/master

hmm...what did this
project look like when I
first cloned this repo?

Note: switching to 'origin/master'.
You are in 'detached HEAD' state. You can look
around, make experimental changes and commit
them, and you can discard any commits you make
in this blah blah blah blah

❯git checkout origin/master

You can checkout these
remote branch pointers

Detached HEAD! Don't panic. It's fine.

master

puppies

Suppose I Just Cloned
This Github Repo

Once you've cloned a repository, we have all the data
and Git history for the project at that moment in time.
 However, that does not mean it's all in my workspace!

The github repo has a branch called puppies, but when I
run git branch I don't see it on my machine! All I see is the
master branch. What's going on?

Remote Branches

git branch❯

*master

Run git branch -r to view the remote
branches our local repository knows about.

Remote Branches
git branch -r❯

origin/master
origin/puppies

Workspace Remote

master origin/master

origin/puppiesBy default, my master branch is
already tracking origin/master.

I didn't connect these myself!

I could checkout origin/puppies, but that puts me
in detached HEAD.

I want my own local branch called puppies, and I
want it to be connected to origin/puppies, just
like my local master branch is connected to
origin/master.

I want to work on the
puppies branch locally!

Run git switch <remote-branch-name>

to create a new local branch from the
remote branch of the same name.

git switch puppies makes me a local
puppies branch AND sets it up to track the
remote branch origin/puppies.

It's super easy!

git switch puppies❯

Branch 'puppies' set up to track remote
branch 'puppies' from 'origin'.
Switched to a new branch 'puppies'

git switch puppies❯

Workspace Remote

master origin/master

origin/puppiespuppies

the new command git switch makes this super easy to do!
It used to be slightly more complicated using git checkout

NOTE!

git checkout --track origin/puppies❯

master

origin/master

Local

Github

origin/master

Local

Github

master

origin/master

Local

Github

master

Uh oh! The remote repo has changed! A
teammate has pushed up changes to the master
branch, but my local repo doesn't know!

How do I get those changes???

Workspace
Staging
(index)

Local
Repository

Remote
Repository

git add git commit

git push

git fetch

git pull

Workspace
Staging
(index)

Local
Repository

Remote
Repository

git add git commit

git push

git fetch

git pull

Fetching allows us to download changes from a remote
repository, BUT those changes will not be automatically
integrated into our working files.

It lets you see what others have been working on, without
having to merge those changes into your local repo.

Think of it as "please go and get the latest information
from Github, but don't screw up my working directory."

Fetching

The git fetch <remote> command fetches branches and
history from a specific remote repository. It only updates
remote tracking branches.

git fetch origin would fetch all changes from the origin
remote repository.

Git Fetch

git fetch <remote>❯

If not specified, <remote> defaults to origin

We can also fetch a specific branch from a remote using
git fetch <remote> <branch>

For example, git fetch origin master would retrieve the
latest information from the master branch on the origin
remote repository.

Git Fetch

git fetch <remote> <branch>❯

origin/master

Local

Github

master

Uh oh! The remote repo has changed! A
teammate has pushed up changes to the master
branch, but my local repo doesn't know!

How do I get those changes???

origin/master
Local

Github

master

git fetch origin master❯

origin/master
Local

Github

master

I now have those changes on my machine, but if I want to see them I
have to checkout origin/master. My master branch is untouched!

Workspace
Staging
(index)

Local
Repository

Remote
Repository

git add git commit

git push

git fetch

git pull

git pull is another command we can use to retrieve
changes from a remote repository. Unlike fetch, pull
actually updates our HEAD branch with whatever
changes are retrieved from the remote.

"go and download data from Github AND immediately
update my local repo with those changes"

Pulling

git pull = git fetch + git merge
update the remote tracking branch
with the latest changes from the
remote repository

update my current branch with
whatever changes are on the remote
tracking branch

To pull, we specify the particular remote and branch we
want to pull using git pull <remote> <branch>. Just like
with git merge, it matters WHERE we run this command
from. Whatever branch we run it from is where the
changes will be merged into.

git pull origin master would fetch the latest information
from the origin's master branch and merge those
changes into our current branch.

git pull

git pull <remote> <branch>❯

pulls can result in
merge conflicts!!

origin/master

Local

Github

master

origin/master

Local

Github

master

git pull origin master❯

master

origin/master

Local

Github

master

master

I now have the latest commits from origin/master on my local master branch
(assuming I pulled while on my master branch)

origin/master

Local

Github

master

master

I have a commit locally that is not on Github.
When I pulled, it was merged with the new commits.
As with any other merge, this can result in merge conflicts.

remote will default to origin
branch will default to whatever tracking connection is
configured for your current branch.

If we run git pull without specifying a particular remote
or branch to pull from, git assumes the following:

Note: this behavior can be configured, and tracking
connections can be changed manually. Most people dont
mess with that stuff

An even
easier syntax!

git pull❯

Workspace Remote

master origin/master

origin/puppiespuppies

git pull❯

When I'm on my local
master branch...

pulls from origin/master
automatically

Workspace Remote

master origin/master

origin/puppiespuppies

git pull❯

When I'm on my local
puppies branch...

pulls from origin/puppies
automatically

Workspace
Staging
(index)

Local
Repository

Remote
Repository

git add git commit

git push

git fetch

git pull

Gets changes from remote branch(es)
Updates the remote-tracking branches
with the new changes
Does not merge changes onto your
current HEAD branch
Safe to do at anytime

git fetch
Gets changes from remote branch(es)
Updates the current branch with the
new changes, merging them in
Can result in merge conflicts
Not recommended if you have
uncommitted changes!

git pull

