
Where Do
We Start?

Git Is (Primarily)
A Terminal Tool
Git was created as command-line tool. To use it, we
run various git commands in a Unix shell. This is not
the most user friendly experience, but it's at the very
core of Git!

The Rise of GUI's

Github Desktop
SourceTree
Tower
GitKraken
Ungit

Over the last few years, companies have created
graphical user interfaces for Git that allow people to
use Git without having to be a command-line expert.

Popular Git GUI's include:

Pros
Way lower barrier-of-entry for beginners
compared to the command-line.
Friendlier to use. Can be a much better
experience (when it works)
Some people prefer the visual experience,
even those who can use the command-line

GUI Clients
Cons

At times, there is lots of "magic" involved. The
inner-workings of Git are obfuscated and
hidden away with GUI's.
Often leads to dependance on a particular
piece of software.
When things go seriously wrong, it can be very
challenging to fix without the command-line
The interfaces, buttons, and menus vary
between different GUI's.

Pros
Git is a command-line tool. All the
documentation and resources online will
refer to the command-line
The command-line can be way faster once
you get comfortable with it!
Some of the more advanced Git features
are only available on the command-line
The commands are always the same, no
matter what machine you are on!

The Command Line
Cons

Not beginner-friendly. At All. Can be difficult to
learn and remember the commands at first.
Even for some practiced users, the command-
line interface is just not a good experience. It's
really a matter of preference.

There is a lot of stupid
GUI gate-keeping

Are you a developer? Do you plan on
becoming a developer?

Learning Git for other purposes?

Learn the command-line!

Try a GUI!

you'll need to use the command-line any way

(or don't!)

Installing a GUI
There are many options to choose from depending on
your operating system, and most of them are incredibly
simple to install!

I will be using GitKraken throughout the course, and I
recommend you install it too. It's free, though there is a
paid tier that we don't need.

Installing Git
Installing Git locally is slightly trickier, depending on your
specific operating system.

Git is intended to run on Unix-style systems like Linux and
MacOS, so if you're on a Windows machine you may
need to take a couple extra steps.

git --version❯

Mac Install
First, check to see if you have Git installed already
using the command git --version
If not, or if you have an old version, download the
latest Git installer package using the link in the
description
Verify your install worked by running git --version
again afterwards

Windows Install

Download Git For Windows

Find the downloaded .exe file and open it to execute
Git Bash.

Git Bash emulates the unix-based Git command-line
experience for Windows machines, and it's super easy to
install!

Configuring Git

Your name
Your email

Now that Git is hopefully installed, it's time to configure
some basic information. You do not need to register for
an account or anything, but you will need to provide:

If you are using a GUI, it should prompt you for your
name and email the first time you open the app.

Configuring Git
To configure the name that Git will

associate with your work, run this command:

git config --global user.name "Tom Hulce"❯

Configuring Git
Do the same thing for your email using the following
command. When we get to Github, you'll want your
Git email address to match your Github account.

git config --global user.email blah@blah.com❯

Let's Get Started!

