
Git Tags

Git Tags
Tags are pointers that refer to particular points in Git
history. We can mark a particular moment in time with a
tag. Tags are most often used to mark version releases in
projects (v4.1.0, v4.1.1, etc.)

Think of tags as branch references that do NOT CHANGE.
 Once a tag is created, it always refers to the same
commit. It's just a label for a commit.

Feature Bugfix

Refactor

Master

Feature Bugfix

Refactor

v3.1.0

Master

Feature Bugfix

Refactor

v3.1.0 v3.2.0

Master

Feature Bugfix

Refactor

v3.1.0 v3.2.0 v3.2.1

Master

Feature Bugfix

Refactor

hotdog pickle bloober
tooober

Master

The Two Types
There are two types of Git tags we can use: lightweight
and annotated tags

lightweight tags are...lightweight. They are just a
name/label that points to a particular commit.

annotated tags store extra meta data including the
author's name and email, the date, and a tagging message
(like a commit message)

Semantic
Versioning
The semantic versioning spec outlines a standardized
versioning system for software releases. It provides a
consistent way for developers to give meaning to their
software releases (how big of a change is this release??)

Versions consist of three numbers separated by periods.

2.4.1

2.4.1
MAJOR RELEASE MINOR RELEASE PATCH RELEASE

Initial Release
Typically, the first release is 1.0.0 1.0.0

Patch Release
Patch releases normally do not contain new features or
significant changes. They typically signify bug fixes and
other changes that do not impact how the code is used 1.0.1

Minor Release
Minor releases signify that new features or functionality
have been added, but the project is still backwards
compatible. No breaking changes. The new functionality
is optional and should not force users to rewrite their own
code.

1.1.0

Major Release
Major releases signify significant changes that is no longer
backwards compatible. Features may be removed or
changed substantially. 2.0.0

Viewing Tags
git tag will print a list of all the tags in the current
repository.

git tag❯

Viewing Tags
We can search for tags that match a particular pattern by
using git tag -l and then passing in a wildcard pattern. For
example, git tag -l "*beta*" will print a list of tags that
include "beta" in their name.

git tag -l "*beta*"❯

Checking Out Tags
To view the state of a repo at a particular tag, we can use
git checkout <tag>. This puts us in detached HEAD!

git checkout <tag>❯

The Two Types
There are two types of Git tags we can use: lightweight
and annotated tags

lightweight tags are...lightweight. They are just a
name/label that points to a particular commit.

annotated tags store extra meta data including the
author's name and email, the date, and a tagging message
(like a commit message)

Creating
Lightweight Tags
To create a lightweight tag, use git tag <tagname>
By default, Git will create the tag referring to the commit
that HEAD is referencing.

git tag <tagname>❯

Annotated Tags
Use git tag -a to create a new annotated tag. Git will
then open your default text editor and prompt you for
additional information.

Similar to git commit, we can also use the -m option to
pass a message directly and forgo the opening of the text
editor

git tag -a <tagname>❯

Tagging Previous
Commits
So far we've seen how to tag the commit that HEAD
references. We can also tag an older commit by providing
the commit hash: git tag -a <tagname> <commit-hash>

git tag <tagname> <commit>❯

Forcing Tags
Git will yell at us if we try to reuse a tag that is already
referring to a commit. If we use the -f option, we can
FORCE our tag through.

git tag -f <tagname>❯

Deleting Tags
To delete a tag, use git tag -d <tagname>

git tag -d <tagname>❯

Pushing Tags
By default, the git push command doesn’t transfer tags to
remote servers. If you have a lot of tags that you want to
push up at once, you can use the --tags option to the git

push command. This will transfer all of your tags to the
remote server that are not already there.

git push --tags❯

