Download Attachment: Click here
01 – Introduction
0/2
02 – Download all course materials
0/3
03 – Concepts in deep learning
0/5
04 – About the Python tutorial
0/1
05 – Math, numpy, PyTorch
0/19
06 – Gradient descent
0/10
07 – ANNs (Artificial Neural Networks)
0/21
08 – Overfitting and cross-validation
0/8
09 – Regularization
0/12
10 – Metaparameters (activations, optimizers)
0/24
11 – FFNs (Feed-Forward Networks)
0/12
12 – More on data
0/11
13 – Measuring model performance
0/8
14 – FFN milestone projects
0/6
15 – Weight inits and investigations
0/10
16 – Autoencoders
0/6
17 – Running models on a GPU
0/3
18 – Convolution and transformations
0/12
19 – Understand and design CNNs
0/16
20 – CNN milestone projects
0/5
21 – Transfer learning
0/8
22 – Style transfer
0/5
23 – Generative adversarial networks
0/7
24 – RNNs (Recurrent Neural Networks) (and GRULSTM)
0/9
25 – Ethics of deep learning
0/5
26 – Where to go from here
0/2
27 – Python intro Data types
0/8
28 – Python intro Indexing, slicing
0/2
29 – Python intro Functions
0/8
30 – Python intro Flow control
0/10
31 – Python intro Text and plots
0/7
32 – Bonus section
0/1
